Link Splice Base: Difference between revisions
No edit summary |
No edit summary |
||
(10 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- <* (* -->{{Splice |
<!-- <* (* -->{{Splice Base Notice}}<!-- *) *> --> |
||
<!-- <* (* --><!-- You can ignore this warning; it's for people trying to edit individual knot pages--><!-- *) *> --> |
|||
<!-- This knot page was produced from [[Hoste-Thistlethwaite Splice Template]] --> |
|||
<!-- WARNING! WARNING! WARNING! |
|||
⚫ | |||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
|||
<!-- --> |
|||
<!-- Almost certainly, you want to edit [[Template:Link Page]], which actually produces this page. |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
|||
<span id="top"></span> |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
|||
<!-- --> |
|||
⚫ | |||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Link Page| |
|||
{{Knot Navigation Links|ext=gif}} |
|||
n = <*n*> | |
|||
t = <*If[AlternatingQ[K],"a","n"]*> | |
|||
k = <*k*> | |
|||
KnotilusURL = <*KnotilusURL[K]*> | |
|||
<br style="clear:both" /> |
|||
braid_table = <* BraidPlot[CollapseBraid[BR[K]], Mode -> "Wiki", |
|||
Images -> {"BraidPart0.gif", "BraidPart1.gif", |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
"BraidPart2.gif", "BraidPart3.gif", "BraidPart4.gif"}] *> | |
|||
⚫ | |||
{{Link Presentations}} |
|||
}} |
|||
{{Link Polynomial Invariants}} |
|||
{{Vassiliev Invariants}} |
|||
⚫ | |||
{{Computer Talk Header}} |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em"><*InOut[1]; KnotTheoryWelcomeMessage[]*></pre></td></tr> |
|||
<*InOut["Crossings[``]", K]*> |
|||
<*InOut["PD[``]", K]*> |
|||
<*InOut["GaussCode[``]", K]*> |
|||
<*InOut["BR[``]", K]*> |
|||
<*InOut["alex = Alexander[``][t]", K]*> |
|||
<*InOut["Conway[``][z]", K]*> |
|||
<*InOut["Select[AllKnots[], (alex === Alexander[#][t])&]"]*> |
|||
<*InOut["{KnotDet[`1`], KnotSignature[`1`]}", K]*> |
|||
<*InOut["J=Jones[``][q]", K]*> |
|||
<*InOut[ |
|||
"Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]" |
|||
]*> |
|||
<* If[Crossings[K]<=18, Include["ColouredJonesM.mhtml"] ,""] *> |
|||
<*InOut["A2Invariant[``][q]", K]*> |
|||
<*InOut["Kauffman[``][a, z]", K]*> |
|||
<*InOut["{Vassiliev[2][`1`], Vassiliev[3][`1`]}", K ]*> |
|||
<*InOut["Kh[``][q, t]", K]*> |
|||
</table> |
|||
<* (* <!-- *) *> {{Category:Knot Page}} <* (* --> *) *> |
Latest revision as of 16:11, 18 September 2005
[[Image:Data:Link Splice Base/Previous Knot.gif|80px|link=Data:Link Splice Base/Previous Knot]] |
[[Image:Data:Link Splice Base/Next Knot.gif|80px|link=Data:Link Splice Base/Next Knot]] |
File:Link Splice Base.gif (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings).
Visit Data:Link Splice Base/KnotilusGaussCode Link Splice Base at Knotilus! |
Link Presentations
[edit Notes on Link Splice Base's Link Presentations]
Planar diagram presentation | Data:Link Splice Base/PD Presentation |
Gauss code | Data:Link Splice Base/Gauss Code |
A Braid Representative | <* BraidPlot[CollapseBraid[BR[K]], Mode -> "Wiki",
Images -> {"BraidPart0.gif", "BraidPart1.gif", "BraidPart2.gif", "BraidPart3.gif", "BraidPart4.gif"}] *> |
A Morse Link Presentation | File:Link Splice Base ML.gif |
Polynomial invariants
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). | Data:Link Splice Base/KhovanovTable |
Integral Khovanov Homology
(db, data source) |
Data:Link Splice Base/Integral Khovanov Homology |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|