Data:K11n71/Integral Khovanov Homology: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
 
No edit summary
 
Line 6: Line 6:
|- align=center
|- align=center
|<math>r=-1</math>
|<math>r=-1</math>
|bgcolor=yellow|<math>{\mathbb Z}^2</math>
|bgcolor=yellow|<math>{\mathbb Z}^{2}</math>
|bgcolor=yellow|
|bgcolor=yellow|
|- align=center
|- align=center
|<math>r=0</math>
|<math>r=0</math>
|bgcolor=yellow|<math>{\mathbb Z}^3\oplus{\mathbb Z}_2^2</math>
|bgcolor=yellow|<math>{\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2}</math>
|bgcolor=yellow|<math>{\mathbb Z}^3</math>
|bgcolor=yellow|<math>{\mathbb Z}^{3}</math>
|- align=center
|- align=center
|<math>r=1</math>
|<math>r=1</math>
|bgcolor=yellow|<math>{\mathbb Z}^5\oplus{\mathbb Z}_2^2</math>
|bgcolor=yellow|<math>{\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2}</math>
|bgcolor=yellow|<math>{\mathbb Z}^2</math>
|bgcolor=yellow|<math>{\mathbb Z}^{2}</math>
|- align=center
|- align=center
|<math>r=2</math>
|<math>r=2</math>
|bgcolor=yellow|<math>{\mathbb Z}^6\oplus{\mathbb Z}_2^5</math>
|bgcolor=yellow|<math>{\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5}</math>
|bgcolor=yellow|<math>{\mathbb Z}^5</math>
|bgcolor=yellow|<math>{\mathbb Z}^{5}</math>
|- align=center
|- align=center
|<math>r=3</math>
|<math>r=3</math>
|bgcolor=yellow|<math>{\mathbb Z}^4\oplus{\mathbb Z}_2^6</math>
|bgcolor=yellow|<math>{\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6}</math>
|bgcolor=yellow|<math>{\mathbb Z}^6</math>
|bgcolor=yellow|<math>{\mathbb Z}^{6}</math>
|- align=center
|- align=center
|<math>r=4</math>
|<math>r=4</math>
|bgcolor=yellow|<math>{\mathbb Z}^6\oplus{\mathbb Z}_2^4</math>
|bgcolor=yellow|<math>{\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4}</math>
|bgcolor=yellow|<math>{\mathbb Z}^4</math>
|bgcolor=yellow|<math>{\mathbb Z}^{4}</math>
|- align=center
|- align=center
|<math>r=5</math>
|<math>r=5</math>
|bgcolor=yellow|<math>{\mathbb Z}^3\oplus{\mathbb Z}_2^6</math>
|bgcolor=yellow|<math>{\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6}</math>
|bgcolor=yellow|<math>{\mathbb Z}^6</math>
|bgcolor=yellow|<math>{\mathbb Z}^{6}</math>
|- align=center
|- align=center
|<math>r=6</math>
|<math>r=6</math>
|bgcolor=yellow|<math>{\mathbb Z}^2\oplus{\mathbb Z}_2^3</math>
|bgcolor=yellow|<math>{\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3}</math>
|bgcolor=yellow|<math>{\mathbb Z}^3</math>
|bgcolor=yellow|<math>{\mathbb Z}^{3}</math>
|- align=center
|- align=center
|<math>r=7</math>
|<math>r=7</math>
|bgcolor=yellow|<math>{\mathbb Z}\oplus{\mathbb Z}_2^2</math>
|bgcolor=yellow|<math>{\mathbb Z}\oplus{\mathbb Z}_2^{2}</math>
|bgcolor=yellow|<math>{\mathbb Z}^2</math>
|bgcolor=yellow|<math>{\mathbb Z}^{2}</math>
|- align=center
|- align=center
|<math>r=8</math>
|<math>r=8</math>

Latest revision as of 08:22, 27 June 2006

[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=1 }[/math] [math]\displaystyle{ i=3 }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=8 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]