L11a397: Difference between revisions
From Knot Atlas
				
				
				Jump to navigationJump to search
				
				| No edit summary | DrorsRobot (talk | contribs)  No edit summary | ||
| (3 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
| <!--                       WARNING! WARNING! WARNING! | |||
| <!-- This page was | <!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit! | ||
| <!--  --> <!-- | |||
| <!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) | |||
|  --> | |||
| <!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> | |||
| <!-- <math>\text{Null}</math> --> | |||
| <!-- <math>\text{Null}</math> --> | |||
| <!--                       WARNING! WARNING! WARNING! | |||
| <!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! | |||
| <!-- Almost certainly, you want to edit [[Template:Link Page]], which actually produces this page. | |||
| <!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. | |||
| <!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> | |||
| <!-- <math>\text{Null}</math> --> | |||
| {{Link Page| | {{Link Page| | ||
| n = 11 | | n = 11 | | ||
| Line 7: | Line 16: | ||
| k = 397 | | k = 397 | | ||
| KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:10,-1,7,-6:11,-2,3,-9,4,-8,5,-7,6,-5,8,-4,9,-3/goTop.html | | KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:10,-1,7,-6:11,-2,3,-9,4,-8,5,-7,6,-5,8,-4,9,-3/goTop.html | | ||
| braid_table     = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> | |||
| <tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> | |||
| <tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> | |||
| <tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> | |||
| <tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]]</td></tr> | |||
| <tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]]</td></tr> | |||
| <tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]]</td></tr> | |||
| <tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> | |||
| <tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> | |||
| </table> | | |||
| khovanov_table  = <table border=1> | khovanov_table  = <table border=1> | ||
| <tr align=center> | <tr align=center> | ||
| Line 35: | Line 54: | ||
|          <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |          <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> | ||
|          </tr> |          </tr> | ||
|          <tr valign=top><td colspan=2>Loading KnotTheory` (version of  |          <tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 397]]</nowiki></pre></td></tr> |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 397]]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> | ||
| Line 51: | Line 70: | ||
|   {11, -2, 3, -9, 4, -8, 5, -7, 6, -5, 8, -4, 9, -3}]</nowiki></pre></td></tr> |   {11, -2, 3, -9, 4, -8, 5, -7, 6, -5, 8, -4, 9, -3}]</nowiki></pre></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Link[11, Alternating, 397]]</nowiki></pre></td></tr> |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Link[11, Alternating, 397]]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[ | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[8, {1, -2, 3, 3, -4, -5, -6, -5, -4, -7, -6, 5, -4, 3, 2, -1, 3, 4,  | ||
|    3, -2, 3, -5, 4, 6, 5, -4, 3, 2, -4, 7, 6, 5, -4}]</nowiki></pre></td></tr> | |||
|          <tr  valign=top><td><pre style="color: blue; border: 0px; padding:  0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red;  border: 0px; padding:  0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 397]]]</nowiki></pre></td></tr><tr><td></td><td  align=left>[[Image:L11a397_ML.gif]]</td></tr><tr valign=top><td><tt><font  color=blue>Out[7]=</font></tt><td><tt><font  color=black>-Graphics-</font></tt></td></tr> |          <tr  valign=top><td><pre style="color: blue; border: 0px; padding:  0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red;  border: 0px; padding:  0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 397]]]</nowiki></pre></td></tr><tr><td></td><td  align=left>[[Image:L11a397_ML.gif]]</td></tr><tr valign=top><td><tt><font  color=blue>Out[7]=</font></tt><td><tt><font  color=black>-Graphics-</font></tt></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, Alternating, 397]]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>0</nowiki></pre></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 397]][q]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     -4    -3   4    4            2      3      4      5      6    7 | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Link[11, Alternating, 397]], KnotSignature[Link[11, Alternating, 397]]}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Infinity, 0}</nowiki></pre></td></tr> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 397]][q]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     -4    -3   4    4            2      3      4      5      6    7 | |||
| 7 + q   - q   + -- - - - 7 q + 8 q  - 7 q  + 5 q  - 4 q  + 3 q  - q | 7 + q   - q   + -- - - - 7 q + 8 q  - 7 q  + 5 q  - 4 q  + 3 q  - q | ||
|                  2   q |                  2   q | ||
|                 q</nowiki></pre></td></tr> |                 q</nowiki></pre></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[ |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[11, Alternating, 397]][q]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     -14    2     2    5    5    3    5     2    4    8    10    12 | ||
| 2 + q    + --- + --- + -- + -- + -- + -- + q  + q  + q  - q   - q   +  | 2 + q    + --- + --- + -- + -- + -- + -- + q  + q  + q  - q   - q   +  | ||
|             12    10    8    6    4    2 |             12    10    8    6    4    2 | ||
| Line 74: | Line 89: | ||
|    14    16    18    20    22 |    14    16    18    20    22 | ||
|   q   - q   + q   + q   - q</nowiki></pre></td></tr> |   q   - q   + q   + q   - q</nowiki></pre></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[ |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[11, Alternating, 397]][a, z]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                         2    4         2    2                   4    4 | ||
|        2    4    -2   2 a    a     2   z    z       2  2    4   z    z |        2    4    -2   2 a    a     2   z    z       2  2    4   z    z | ||
| 2 - 3 a  + a  + z   - ---- + -- + z  - -- + -- - 2 a  z  + z  + -- + -- | 2 - 3 a  + a  + z   - ---- + -- + z  - -- + -- - 2 a  z  + z  + -- + -- | ||
|                         2     2         6    4                   4    2 |                         2     2         6    4                   4    2 | ||
|                        z     z         a    a                   a    a</nowiki></pre></td></tr> |                        z     z         a    a                   a    a</nowiki></pre></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[ |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[11, Alternating, 397]][a, z]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                           2    4            3 | ||
|        2      4    -2   2 a    a    2 a   2 a               3 |        2      4    -2   2 a    a    2 a   2 a               3 | ||
| 3 + 5 a  + 3 a  - z   - ---- - -- + --- + ---- - 3 a z - 3 a  z -  | 3 + 5 a  + 3 a  - z   - ---- - -- + --- + ---- - 3 a z - 3 a  z -  | ||
| Line 110: | Line 125: | ||
|   a                  6     4     2      5      3    a     4     2 |   a                  6     4     2      5      3    a     4     2 | ||
|                     a     a     a      a      a          a     a</nowiki></pre></td></tr> |                     a     a     a      a      a          a     a</nowiki></pre></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[ |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 397]][q, t]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>6           1       1       1       3       1      1      3 | ||
| {0, --} | |||
|     6</nowiki></pre></td></tr> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 397]][q, t]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>6           1       1       1       3       1      1      3 | |||
| - + 4 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 4 q t +  | - + 4 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 4 q t +  | ||
| q          9  4    7  4    7  3    5  2    3  2    3     q t | q          9  4    7  4    7  3    5  2    3  2    3     q t | ||
Latest revision as of 03:09, 3 September 2005
|  |  | 
|  (Knotscape image) | See the full Thistlethwaite Link Table (up to 11 crossings). | 
Link Presentations
[edit Notes on L11a397's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X22,12,9,11 X20,14,21,13 X18,16,19,15 X8,18,5,17 X16,8,17,7 X14,20,15,19 X12,22,13,21 X2536 X4,9,1,10 | 
| Gauss code | {1, -10, 2, -11}, {10, -1, 7, -6}, {11, -2, 3, -9, 4, -8, 5, -7, 6, -5, 8, -4, 9, -3} | 
| A Braid Representative | 
 | ||||||||
| A Morse Link Presentation |   | 
Polynomial invariants
| Multivariable Alexander Polynomial (in , , , ...) | (db) | 
| Jones polynomial | (db) | 
| Signature | 0 (db) | 
| HOMFLY-PT polynomial | (db) | 
| Kauffman polynomial | (db) | 
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). | 
 | 
| Integral Khovanov Homology (db, data source) |  | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. | 
 | 







