L10n94: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| (2 intermediate revisions by 2 users not shown) | |||
| Line 16: | Line 16: | ||
k = 94 | |
k = 94 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,10,-5,-7,6,-3:-4,-1,2,5,-8,9:7,-6,-9,4,3,-2,-10,8/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,10,-5,-7,6,-3:-4,-1,2,5,-8,9:7,-6,-9,4,3,-2,-10,8/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
</table> | |
|||
khovanov_table = <table border=1> |
khovanov_table = <table border=1> |
||
<tr align=center> |
<tr align=center> |
||
| Line 40: | Line 45: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[10, NonAlternating, 94]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[10, NonAlternating, 94]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> |
||
| Line 55: | Line 60: | ||
{7, -6, -9, 4, 3, -2, -10, 8}]</nowiki></pre></td></tr> |
{7, -6, -9, 4, 3, -2, -10, 8}]</nowiki></pre></td></tr> |
||
<tr |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Link[10, NonAlternating, 94]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 1, 2, 2, 1, -2, 1, 2, -1, 2}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[10, NonAlternating, 94]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L10n94_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[7]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[10, NonAlternating, 94]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[10, NonAlternating, 94]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 3 4 9 |
|||
q + q + q + q</nowiki></pre></td></tr> |
q + q + q + q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[10, NonAlternating, 94]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8 10 12 14 16 18 20 22 24 |
||
q + 2 q + 4 q + 4 q + 4 q + 2 q + q + q + 2 q + 3 q + |
q + 2 q + 4 q + 4 q + 4 q + 2 q + q + q + 2 q + 3 q + |
||
26 28 |
26 28 |
||
2 q + q</nowiki></pre></td></tr> |
2 q + q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[10, NonAlternating, 94]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 4 4 |
||
3 9 6 1 2 1 z 6 z 5 z z z |
3 9 6 1 2 1 z 6 z 5 z z z |
||
-- - -- + -- + ----- - ----- + ----- + -- - ---- + ---- - -- + -- |
-- - -- + -- + ----- - ----- + ----- + -- - ---- + ---- - -- + -- |
||
8 6 4 8 2 6 2 4 2 8 6 4 6 4 |
8 6 4 8 2 6 2 4 2 8 6 4 6 4 |
||
a a a a z a z a z a a a a a</nowiki></pre></td></tr> |
a a a a z a z a z a a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[10, NonAlternating, 94]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>-2 3 11 7 1 2 1 2 2 9 z 9 z |
||
--- + -- + -- + -- - ----- - ----- - ----- + ---- + ---- - --- - --- + |
--- + -- + -- + -- - ----- - ----- - ----- + ---- + ---- - --- - --- + |
||
10 8 6 4 8 2 6 2 4 2 7 5 7 5 |
10 8 6 4 8 2 6 2 4 2 7 5 7 5 |
||
| Line 90: | Line 97: | ||
10 6 |
10 6 |
||
a a</nowiki></pre></td></tr> |
a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[10, NonAlternating, 94]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 5 2 7 2 9 2 7 3 11 3 11 4 |
||
q + q + q t + 3 q t + q t + q t + q t + 2 q t + |
q + q + q t + 3 q t + q t + q t + q t + 2 q t + |
||
Latest revision as of 02:10, 3 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n94's Link Presentations]
| Planar diagram presentation | X8192 X18,10,19,9 X6,18,1,17 X7,17,8,16 X3,10,4,11 X14,6,15,5 X4,14,5,13 X11,13,12,20 X15,7,16,12 X19,3,20,2 |
| Gauss code | {1, 10, -5, -7, 6, -3}, {-4, -1, 2, 5, -8, 9}, {7, -6, -9, 4, 3, -2, -10, 8} |
| A Braid Representative | ||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(t(1) t(2) t(3)+1) \left(t(3)^2-t(1) t(2)\right)}{t(1) t(2) t(3)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^9+q^4+q^3+q^2 }[/math] (db) |
| Signature | 3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^2 a^{-8} + a^{-8} z^{-2} +3 a^{-8} -z^4 a^{-6} -6 z^2 a^{-6} -2 a^{-6} z^{-2} -9 a^{-6} +z^4 a^{-4} +5 z^2 a^{-4} + a^{-4} z^{-2} +6 a^{-4} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^6 a^{-10} -6 z^4 a^{-10} +9 z^2 a^{-10} -2 a^{-10} -z^2 a^{-8} - a^{-8} z^{-2} +3 a^{-8} -z^5 a^{-7} +6 z^3 a^{-7} -9 z a^{-7} +2 a^{-7} z^{-1} -z^6 a^{-6} +7 z^4 a^{-6} -15 z^2 a^{-6} -2 a^{-6} z^{-2} +11 a^{-6} -z^5 a^{-5} +6 z^3 a^{-5} -9 z a^{-5} +2 a^{-5} z^{-1} +z^4 a^{-4} -5 z^2 a^{-4} - a^{-4} z^{-2} +7 a^{-4} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



