L10n29: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| (One intermediate revision by the same user not shown) | |||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- --> |
<!-- <math>\text{Null}</math> --> |
||
<!-- --> |
<!-- <math>\text{Null}</math> --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
| Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- --> |
<!-- <math>\text{Null}</math> --> |
||
{{Link Page| |
{{Link Page| |
||
n = 10 | |
n = 10 | |
||
t = |
t = n | |
||
k = 29 | |
k = 29 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,-2,10:9,-1,-3,6,-5,2,-10,8,-7,3,-4,5,-8,7,-6,4/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,-2,10:9,-1,-3,6,-5,2,-10,8,-7,3,-4,5,-8,7,-6,4/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
| ⚫ | |||
khovanov_table = <table border=1> |
khovanov_table = <table border=1> |
||
<tr align=center> |
<tr align=center> |
||
| Line 41: | Line 47: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2 |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
| ⚫ | |||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Length[Skeleton[Link[10, NonAlternating, 29]]]</nowiki></pre></td></tr> |
||
<td>< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2</nowiki></pre></td></tr> |
||
| ⚫ | |||
<tr align=left> |
|||
< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 1, 7, 2], X[3, 10, 4, 11], X[7, 14, 8, 15], X[15, 20, 16, 5], |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>10</nowiki></code></td></tr> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[10, NonAlternating, 29]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 1, 7, 2], X[3, 10, 4, 11], X[7, 14, 8, 15], X[15, 20, 16, 5], |
|||
X[9, 17, 10, 16], X[19, 9, 20, 8], X[13, 19, 14, 18], |
X[9, 17, 10, 16], X[19, 9, 20, 8], X[13, 19, 14, 18], |
||
X[17, 13, 18, 12], X[2, 5, 3, 6], X[11, 4, 12, 1]]</nowiki></ |
X[17, 13, 18, 12], X[2, 5, 3, 6], X[11, 4, 12, 1]]</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
| ⚫ | |||
-8, 7, -6, 4}]</nowiki></ |
-8, 7, -6, 4}]</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, -2, -2, 1, 1, -3, -2, 1, -2, -3}]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[10, NonAlternating, 29]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L10n29_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[7]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td>< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[10, NonAlternating, 29]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>-1</nowiki></pre></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L10n29_ML.gif]]</td></tr><tr align=left> |
|||
< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[10, NonAlternating, 29]][q]</nowiki></pre></td></tr> |
||
<td>< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 5 8 9 9 3/2 5/2 7/2 |
||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>KnotSignature[Link[10, NonAlternating, 29]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-1</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
| ⚫ | |||
---- + ---- - ---- + ---- - ------- + 8 Sqrt[q] - 6 q + 3 q - q |
---- + ---- - ---- + ---- - ------- + 8 Sqrt[q] - 6 q + 3 q - q |
||
9/2 7/2 5/2 3/2 Sqrt[q] |
9/2 7/2 5/2 3/2 Sqrt[q] |
||
q q q q</nowiki></ |
q q q q</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
| ⚫ | |||
2 + q + q + --- + q + --- + q - -- + q - -- + 2 q - q + |
2 + q + q + --- + q + --- + q - -- + q - -- + 2 q - q + |
||
14 10 6 2 |
14 10 6 2 |
||
| Line 112: | Line 79: | ||
10 |
10 |
||
q</nowiki></ |
q</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
| ⚫ | |||
1 3 a 4 a 2 a 3 z 3 5 3 z |
1 3 a 4 a 2 a 3 z 3 5 3 z |
||
-(---) + --- - ---- + ---- - --- + 7 a z - 7 a z + a z - ---- + |
-(---) + --- - ---- + ---- - --- + 7 a z - 7 a z + a z - ---- + |
||
| Line 127: | Line 89: | ||
3 3 3 z 5 3 5 7 |
3 3 3 z 5 3 5 7 |
||
9 a z - 4 a z - -- + 5 a z - a z + a z |
9 a z - 4 a z - -- + 5 a z - a z + a z |
||
a</nowiki></ |
a</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
| ⚫ | |||
-2 2 4 1 3 a 4 a 2 a z 2 z |
-2 2 4 1 3 a 4 a 2 a z 2 z |
||
3 + a + 3 a + 2 a - --- - --- - ---- - ---- - -- + --- + 12 a z + |
3 + a + 3 a + 2 a - --- - --- - ---- - ---- - -- + --- + 12 a z + |
||
| Line 161: | Line 118: | ||
4 z 7 3 7 8 2 8 |
4 z 7 3 7 8 2 8 |
||
---- - 9 a z - 5 a z - 2 z - 2 a z |
---- - 9 a z - 5 a z - 2 z - 2 a z |
||
a</nowiki></ |
a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[10, NonAlternating, 29]][q, t]</nowiki></pre></td></tr> |
|||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 5 3 1 3 2 5 3 4 5 |
|||
5 + -- + ------ + ----- + ----- + ----- + ----- + ----- + ---- + ---- + |
5 + -- + ------ + ----- + ----- + ----- + ----- + ----- + ---- + ---- + |
||
2 10 4 8 4 8 3 6 3 6 2 4 2 4 2 |
2 10 4 8 4 8 3 6 3 6 2 4 2 4 2 |
||
| Line 174: | Line 126: | ||
2 2 2 4 2 4 3 6 3 8 4 |
2 2 2 4 2 4 3 6 3 8 4 |
||
4 t + 4 q t + 2 q t + 4 q t + q t + 2 q t + q t</nowiki></ |
4 t + 4 q t + 2 q t + 4 q t + q t + 2 q t + q t</nowiki></pre></td></tr> |
||
</table> }} |
</table> }} |
||
Latest revision as of 02:12, 3 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n29's Link Presentations]
| Planar diagram presentation | X6172 X3,10,4,11 X7,14,8,15 X15,20,16,5 X9,17,10,16 X19,9,20,8 X13,19,14,18 X17,13,18,12 X2536 X11,4,12,1 |
| Gauss code | {1, -9, -2, 10}, {9, -1, -3, 6, -5, 2, -10, 8, -7, 3, -4, 5, -8, 7, -6, 4} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{t(1) t(2)^5-3 t(1) t(2)^4+t(2)^4+4 t(1) t(2)^3-4 t(2)^3-4 t(1) t(2)^2+4 t(2)^2+t(1) t(2)-3 t(2)+1}{\sqrt{t(1)} t(2)^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{7/2}+3 q^{5/2}-6 q^{3/2}+8 \sqrt{q}-\frac{9}{\sqrt{q}}+\frac{9}{q^{3/2}}-\frac{8}{q^{5/2}}+\frac{5}{q^{7/2}}-\frac{3}{q^{9/2}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a z^7-a^3 z^5+5 a z^5-z^5 a^{-1} -4 a^3 z^3+9 a z^3-3 z^3 a^{-1} +a^5 z-7 a^3 z+7 a z-3 z a^{-1} +2 a^5 z^{-1} -4 a^3 z^{-1} +3 a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -2 a^2 z^8-2 z^8-5 a^3 z^7-9 a z^7-4 z^7 a^{-1} -3 a^4 z^6-3 a^2 z^6-3 z^6 a^{-2} -3 z^6+13 a^3 z^5+21 a z^5+7 z^5 a^{-1} -z^5 a^{-3} +3 a^4 z^4+11 a^2 z^4+6 z^4 a^{-2} +14 z^4-6 a^5 z^3-23 a^3 z^3-21 a z^3-2 z^3 a^{-1} +2 z^3 a^{-3} -4 a^4 z^2-11 a^2 z^2-3 z^2 a^{-2} -10 z^2+8 a^5 z+17 a^3 z+12 a z+2 z a^{-1} -z a^{-3} +2 a^4+3 a^2+ a^{-2} +3-2 a^5 z^{-1} -4 a^3 z^{-1} -3 a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



