L11a98: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| (One intermediate revision by the same user not shown) | |||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- --> |
<!-- <math>\text{Null}</math> --> |
||
<!-- --> |
<!-- <math>\text{Null}</math> --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
| Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- --> |
<!-- <math>\text{Null}</math> --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = |
t = a | |
||
k = 98 | |
k = 98 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2,3,-6:4,-1,8,-9,2,-4,5,-3,7,-11,10,-8,9,-7,11,-10,6,-5/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2,3,-6:4,-1,8,-9,2,-4,5,-3,7,-11,10,-8,9,-7,11,-10,6,-5/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
| ⚫ | |||
khovanov_table = <table border=1> |
khovanov_table = <table border=1> |
||
<tr align=center> |
<tr align=center> |
||
| Line 44: | Line 51: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2 |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
| ⚫ | |||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Length[Skeleton[Link[11, Alternating, 98]]]</nowiki></pre></td></tr> |
||
<td>< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2</nowiki></pre></td></tr> |
||
| ⚫ | |||
<tr align=left> |
|||
< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 1, 7, 2], X[2, 9, 3, 10], X[12, 3, 13, 4], X[10, 5, 11, 6], |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[11, Alternating, 98]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 1, 7, 2], X[2, 9, 3, 10], X[12, 3, 13, 4], X[10, 5, 11, 6], |
|||
X[22, 11, 5, 12], X[4, 21, 1, 22], X[18, 14, 19, 13], |
X[22, 11, 5, 12], X[4, 21, 1, 22], X[18, 14, 19, 13], |
||
| Line 71: | Line 63: | ||
X[16, 8, 17, 7], X[8, 18, 9, 17], X[20, 16, 21, 15], |
X[16, 8, 17, 7], X[8, 18, 9, 17], X[20, 16, 21, 15], |
||
X[14, 20, 15, 19]]</nowiki></ |
X[14, 20, 15, 19]]</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
| ⚫ | |||
9, -7, 11, -10, 6, -5}]</nowiki></ |
9, -7, 11, -10, 6, -5}]</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {1, 2, -3, 4, -3, -2, -1, -3, 2, 2, -3, -4, -3, 2, 2, 2, -3}]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 98]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a98_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[7]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td>< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, Alternating, 98]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>1</nowiki></pre></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L11a98_ML.gif]]</td></tr><tr align=left> |
|||
< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 98]][q]</nowiki></pre></td></tr> |
||
<td>< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(11/2) 3 7 12 18 20 |
||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>KnotSignature[Link[11, Alternating, 98]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>1</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -(11/2) 3 7 12 18 20 |
|||
-q + ---- - ---- + ---- - ---- + ------- - 22 Sqrt[q] + |
-q + ---- - ---- + ---- - ---- + ------- - 22 Sqrt[q] + |
||
9/2 7/2 5/2 3/2 Sqrt[q] |
9/2 7/2 5/2 3/2 Sqrt[q] |
||
| Line 107: | Line 80: | ||
3/2 5/2 7/2 9/2 11/2 |
3/2 5/2 7/2 9/2 11/2 |
||
19 q - 15 q + 10 q - 4 q + q</nowiki></ |
19 q - 15 q + 10 q - 4 q + q</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
| ⚫ | |||
4 + q - q + --- + q - -- + -- - q + -- - q + 4 q - 5 q + |
4 + q - q + --- + q - -- + -- - q + -- - q + 4 q - 5 q + |
||
12 8 6 2 |
12 8 6 2 |
||
| Line 120: | Line 88: | ||
8 10 12 14 16 |
8 10 12 14 16 |
||
q - q - 3 q + 2 q - q</nowiki></ |
q - q - 3 q + 2 q - q</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
| ⚫ | |||
1 2 a 2 z 2 z 3 2 z 3 z 3 |
1 2 a 2 z 2 z 3 2 z 3 z 3 |
||
---- - --- + -- + --- - --- - 5 a z + 3 a z + ---- - ---- - 7 a z + |
---- - --- + -- + --- - --- - 5 a z + 3 a z + ---- - ---- - 7 a z + |
||
| Line 137: | Line 100: | ||
3 a z + -- - ---- - 4 a z + a z - -- - a z |
3 a z + -- - ---- - 4 a z + a z - -- - a z |
||
3 a a |
3 a a |
||
a</nowiki></ |
a</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 |
|||
2 5 2 1 2 a 2 z 4 z 3 |
2 5 2 1 2 a 2 z 4 z 3 |
||
3 + -- + -- - a - ---- - --- + -- + --- + --- - 2 a z - 2 a z + |
3 + -- + -- - a - ---- - --- + -- + --- + --- - 2 a z - 2 a z + |
||
| Line 181: | Line 139: | ||
3 9 10 2 10 |
3 9 10 2 10 |
||
4 a z - 2 z - 2 a z</nowiki></ |
4 a z - 2 z - 2 a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 98]][q, t]</nowiki></pre></td></tr> |
|||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
| ⚫ | |||
12 + 11 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- + |
12 + 11 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- + |
||
12 6 10 5 8 5 8 4 6 4 6 3 4 3 |
12 6 10 5 8 5 8 4 6 4 6 3 4 3 |
||
| Line 199: | Line 152: | ||
6 3 8 3 8 4 10 4 12 5 |
6 3 8 3 8 4 10 4 12 5 |
||
3 q t + 7 q t + q t + 3 q t + q t</nowiki></ |
3 q t + 7 q t + q t + 3 q t + q t</nowiki></pre></td></tr> |
||
</table> }} |
</table> }} |
||
Latest revision as of 02:13, 3 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a98's Link Presentations]
| Planar diagram presentation | X6172 X2,9,3,10 X12,3,13,4 X10,5,11,6 X22,11,5,12 X4,21,1,22 X18,14,19,13 X16,8,17,7 X8,18,9,17 X20,16,21,15 X14,20,15,19 |
| Gauss code | {1, -2, 3, -6}, {4, -1, 8, -9, 2, -4, 5, -3, 7, -11, 10, -8, 9, -7, 11, -10, 6, -5} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{2 t(1) t(2)^5-2 t(2)^5-5 t(1) t(2)^4+7 t(2)^4+8 t(1) t(2)^3-9 t(2)^3-9 t(1) t(2)^2+8 t(2)^2+7 t(1) t(2)-5 t(2)-2 t(1)+2}{\sqrt{t(1)} t(2)^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{11/2}-4 q^{9/2}+10 q^{7/2}-15 q^{5/2}+19 q^{3/2}-22 \sqrt{q}+\frac{20}{\sqrt{q}}-\frac{18}{q^{3/2}}+\frac{12}{q^{5/2}}-\frac{7}{q^{7/2}}+\frac{3}{q^{9/2}}-\frac{1}{q^{11/2}} }[/math] (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -a z^7-z^7 a^{-1} +a^3 z^5-4 a z^5-3 z^5 a^{-1} +z^5 a^{-3} +3 a^3 z^3-7 a z^3-3 z^3 a^{-1} +2 z^3 a^{-3} +3 a^3 z-5 a z-2 z a^{-1} +2 z a^{-3} +a^3 z^{-1} -2 a^{-1} z^{-1} + a^{-3} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^4 a^{-6} +a^5 z^7-4 a^5 z^5+4 z^5 a^{-5} +5 a^5 z^3-2 a^5 z+3 a^4 z^8-11 a^4 z^6+10 z^6 a^{-4} +13 a^4 z^4-9 z^4 a^{-4} -5 a^4 z^2+5 z^2 a^{-4} -2 a^{-4} +4 a^3 z^9-11 a^3 z^7+15 z^7 a^{-3} +7 a^3 z^5-21 z^5 a^{-3} +10 z^3 a^{-3} +2 a^3 z-2 z a^{-3} -a^3 z^{-1} + a^{-3} z^{-1} +2 a^2 z^{10}+5 a^2 z^8+14 z^8 a^{-2} -30 a^2 z^6-18 z^6 a^{-2} +34 a^2 z^4-2 z^4 a^{-2} -12 a^2 z^2+10 z^2 a^{-2} +a^2-5 a^{-2} +12 a z^9+8 z^9 a^{-1} -28 a z^7-z^7 a^{-1} +14 a z^5-22 z^5 a^{-1} -2 a z^3+13 z^3 a^{-1} +2 a z-4 z a^{-1} +2 a^{-1} z^{-1} +2 z^{10}+16 z^8-47 z^6+29 z^4-2 z^2-3 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



