L11a477: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 16: | Line 16: | ||
k = 477 | |
k = 477 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:9,-4,7,-6,8,-5:10,-1,3,-9,4,-2,11,-7,6,-8,5,-3/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:9,-4,7,-6,8,-5:10,-1,3,-9,4,-2,11,-7,6,-8,5,-3/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]]</td></tr> |
||
| Line 50: | Line 50: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 477]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 477]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
Latest revision as of 02:26, 3 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a477's Link Presentations]
| Planar diagram presentation | X6172 X10,4,11,3 X16,8,5,7 X18,9,19,10 X22,15,17,16 X20,13,21,14 X12,19,13,20 X14,21,15,22 X8,17,9,18 X2536 X4,12,1,11 |
| Gauss code | {1, -10, 2, -11}, {9, -4, 7, -6, 8, -5}, {10, -1, 3, -9, 4, -2, 11, -7, 6, -8, 5, -3} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(u-1) (w-1) \left(v^2 w^3-2 v^2 w^2+2 v w^2-2 v w+2 w-1\right)}{\sqrt{u} v w^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{-10} -2 q^{-9} +5 q^{-8} -8 q^{-7} +11 q^{-6} -12 q^{-5} +13 q^{-4} -10 q^{-3} +9 q^{-2} -q-5 q^{-1} +3 }[/math] (db) |
| Signature | -4 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^8 z^4+4 a^8 z^2+a^8 z^{-2} +4 a^8-2 a^6 z^6-10 a^6 z^4-17 a^6 z^2-2 a^6 z^{-2} -12 a^6+a^4 z^8+6 a^4 z^6+14 a^4 z^4+17 a^4 z^2+a^4 z^{-2} +9 a^4-a^2 z^6-4 a^2 z^4-4 a^2 z^2-a^2 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{12} z^4-2 a^{12} z^2+a^{12}+2 a^{11} z^5-2 a^{11} z^3+3 a^{10} z^6-2 a^{10} z^4+4 a^9 z^7-5 a^9 z^5+4 a^9 z^3+4 a^8 z^8-6 a^8 z^6+6 a^8 z^4-6 a^8 z^2-a^8 z^{-2} +5 a^8+3 a^7 z^9-3 a^7 z^7-5 a^7 z^5+12 a^7 z^3-10 a^7 z+2 a^7 z^{-1} +a^6 z^{10}+6 a^6 z^8-29 a^6 z^6+43 a^6 z^4-35 a^6 z^2-2 a^6 z^{-2} +15 a^6+6 a^5 z^9-17 a^5 z^7+7 a^5 z^5+11 a^5 z^3-12 a^5 z+2 a^5 z^{-1} +a^4 z^{10}+5 a^4 z^8-33 a^4 z^6+51 a^4 z^4-36 a^4 z^2-a^4 z^{-2} +12 a^4+3 a^3 z^9-9 a^3 z^7+a^3 z^5+9 a^3 z^3-3 a^3 z+3 a^2 z^8-13 a^2 z^6+17 a^2 z^4-9 a^2 z^2+2 a^2+a z^7-4 a z^5+4 a z^3-a z }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



