L11n175: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| (2 intermediate revisions by 2 users not shown) | |||
| Line 16: | Line 16: | ||
k = 175 | |
k = 175 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,11,-5,-10,3,-9:6,-1,-2,5,4,-6,7,-3,9,-7,8,-4,-11,2,10,-8/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,11,-5,-10,3,-9:6,-1,-2,5,4,-6,7,-3,9,-7,8,-4,-11,2,10,-8/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
</table> | |
|||
khovanov_table = <table border=1> |
khovanov_table = <table border=1> |
||
<tr align=center> |
<tr align=center> |
||
| Line 42: | Line 49: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, NonAlternating, 175]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, NonAlternating, 175]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
| Line 57: | Line 64: | ||
{6, -1, -2, 5, 4, -6, 7, -3, 9, -7, 8, -4, -11, 2, 10, -8}]</nowiki></pre></td></tr> |
{6, -1, -2, 5, 4, -6, 7, -3, 9, -7, 8, -4, -11, 2, 10, -8}]</nowiki></pre></td></tr> |
||
<tr |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Link[11, NonAlternating, 175]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {1, -2, 3, -2, 4, 3, -2, -1, -2, -3, 2, -3, -2, -4, -3, -2, -2}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 175]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11n175_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[7]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, NonAlternating, 175]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>-3</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, NonAlternating, 175]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(21/2) 4 6 9 11 11 10 8 4 |
|||
q - ----- + ----- - ----- + ----- - ----- + ---- - ---- + ---- - |
q - ----- + ----- - ----- + ----- - ----- + ---- - ---- + ---- - |
||
19/2 17/2 15/2 13/2 11/2 9/2 7/2 5/2 |
19/2 17/2 15/2 13/2 11/2 9/2 7/2 5/2 |
||
| Line 70: | Line 79: | ||
3/2 |
3/2 |
||
q</nowiki></pre></td></tr> |
q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[11, NonAlternating, 175]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -32 2 -28 4 -22 -18 2 2 -12 3 2 |
||
-q + --- + q + --- - q - q - --- + --- - q + --- + -- - |
-q + --- + q + --- - q - q - --- + --- - q + --- + -- - |
||
30 24 16 14 10 8 |
30 24 16 14 10 8 |
||
| Line 80: | Line 89: | ||
4 |
4 |
||
q</nowiki></pre></td></tr> |
q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[11, NonAlternating, 175]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 7 9 |
||
a 2 a 2 a a 3 5 7 3 3 5 3 |
a 2 a 2 a a 3 5 7 3 3 5 3 |
||
-(--) + ---- - ---- + -- - 3 a z + a z - a z - 2 a z + a z + |
-(--) + ---- - ---- + -- - 3 a z + a z - a z - 2 a z + a z + |
||
| Line 88: | Line 97: | ||
7 3 9 3 5 5 7 5 |
7 3 9 3 5 5 7 5 |
||
a z - a z + a z + a z</nowiki></pre></td></tr> |
a z - a z + a z + a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[11, NonAlternating, 175]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 7 9 |
||
6 a 2 a 2 a a 3 5 7 9 |
6 a 2 a 2 a a 3 5 7 9 |
||
-a - -- - ---- - ---- - -- + 4 a z + 7 a z + 9 a z + 5 a z - |
-a - -- - ---- - ---- - -- + 4 a z + 7 a z + 9 a z + 5 a z - |
||
| Line 108: | Line 117: | ||
9 7 11 7 6 8 8 8 10 8 7 9 9 9 |
9 7 11 7 6 8 8 8 10 8 7 9 9 9 |
||
2 a z - 4 a z - 4 a z - 9 a z - 5 a z - 2 a z - 2 a z</nowiki></pre></td></tr> |
2 a z - 4 a z - 4 a z - 9 a z - 5 a z - 2 a z - 2 a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, NonAlternating, 175]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 2 1 3 1 3 3 6 |
||
q + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
q + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
||
2 22 9 20 8 18 8 18 7 16 7 16 6 |
2 22 9 20 8 18 8 18 7 16 7 16 6 |
||
Latest revision as of 02:32, 3 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n175's Link Presentations]
| Planar diagram presentation | X8192 X9,21,10,20 X14,5,15,6 X18,12,19,11 X3,10,4,11 X12,7,13,8 X16,13,17,14 X22,17,7,18 X6,15,1,16 X4,21,5,22 X19,2,20,3 |
| Gauss code | {1, 11, -5, -10, 3, -9}, {6, -1, -2, 5, 4, -6, 7, -3, 9, -7, 8, -4, -11, 2, 10, -8} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{-3 u^2 v^2+3 u^2 v-u^2+2 u v^4-5 u v^3+5 u v^2-5 u v+2 u-v^4+3 v^3-3 v^2}{u v^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{2}{q^{3/2}}+\frac{4}{q^{5/2}}-\frac{8}{q^{7/2}}+\frac{10}{q^{9/2}}-\frac{11}{q^{11/2}}+\frac{11}{q^{13/2}}-\frac{9}{q^{15/2}}+\frac{6}{q^{17/2}}-\frac{4}{q^{19/2}}+\frac{1}{q^{21/2}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^9 \left(-z^3\right)+a^9 z^{-1} +a^7 z^5+a^7 z^3-a^7 z-2 a^7 z^{-1} +a^5 z^5+a^5 z^3+a^5 z+2 a^5 z^{-1} -2 a^3 z^3-3 a^3 z-a^3 z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{12} z^6-2 a^{12} z^4+4 a^{11} z^7-12 a^{11} z^5+7 a^{11} z^3+a^{11} z+5 a^{10} z^8-15 a^{10} z^6+11 a^{10} z^4-3 a^{10} z^2+2 a^9 z^9+2 a^9 z^7-19 a^9 z^5+17 a^9 z^3-5 a^9 z+a^9 z^{-1} +9 a^8 z^8-27 a^8 z^6+27 a^8 z^4-11 a^8 z^2+2 a^7 z^9+a^7 z^7-12 a^7 z^5+17 a^7 z^3-9 a^7 z+2 a^7 z^{-1} +4 a^6 z^8-10 a^6 z^6+16 a^6 z^4-9 a^6 z^2+a^6+3 a^5 z^7-5 a^5 z^5+10 a^5 z^3-7 a^5 z+2 a^5 z^{-1} +a^4 z^6+2 a^4 z^4-a^4 z^2+3 a^3 z^3-4 a^3 z+a^3 z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



