L11a111: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| (One intermediate revision by the same user not shown) | |||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- --> |
<!-- <math>\text{Null}</math> --> |
||
<!-- --> |
<!-- <math>\text{Null}</math> --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
| Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- --> |
<!-- <math>\text{Null}</math> --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = |
t = a | |
||
k = 111 | |
k = 111 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:10,-1,3,-6,4,-7,8,-9,5,-2,11,-3,6,-4,9,-8,7,-5/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:10,-1,3,-6,4,-7,8,-9,5,-2,11,-3,6,-4,9,-8,7,-5/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
| ⚫ | |||
khovanov_table = <table border=1> |
khovanov_table = <table border=1> |
||
<tr align=center> |
<tr align=center> |
||
| Line 44: | Line 51: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2 |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
| ⚫ | |||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Length[Skeleton[Link[11, Alternating, 111]]]</nowiki></pre></td></tr> |
||
<td>< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2</nowiki></pre></td></tr> |
||
| ⚫ | |||
<tr align=left> |
|||
< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 1, 7, 2], X[14, 4, 15, 3], X[16, 8, 17, 7], X[18, 10, 19, 9], |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[11, Alternating, 111]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 1, 7, 2], X[14, 4, 15, 3], X[16, 8, 17, 7], X[18, 10, 19, 9], |
|||
X[22, 14, 5, 13], X[8, 18, 9, 17], X[10, 22, 11, 21], |
X[22, 14, 5, 13], X[8, 18, 9, 17], X[10, 22, 11, 21], |
||
X[20, 12, 21, 11], X[12, 20, 13, 19], X[2, 5, 3, 6], X[4, 16, 1, 15]]</nowiki></ |
X[20, 12, 21, 11], X[12, 20, 13, 19], X[2, 5, 3, 6], X[4, 16, 1, 15]]</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
| ⚫ | |||
-3, 6, -4, 9, -8, 7, -5}]</nowiki></ |
-3, 6, -4, 9, -8, 7, -5}]</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {1, 2, -3, 2, -1, 2, 3, 2, 4, -3, 2, 2, -3, 2, 2, 2, -4}]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 111]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a111_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[7]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td>< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, Alternating, 111]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L11a111_ML.gif]]</td></tr><tr align=left> |
|||
< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 111]][q]</nowiki></pre></td></tr> |
||
<td>< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3/2 5/2 7/2 9/2 11/2 13/2 |
||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>KnotSignature[Link[11, Alternating, 111]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3/2 5/2 7/2 9/2 11/2 13/2 |
|||
-Sqrt[q] + 2 q - 5 q + 6 q - 9 q + 9 q - 10 q + |
-Sqrt[q] + 2 q - 5 q + 6 q - 9 q + 9 q - 10 q + |
||
15/2 17/2 19/2 21/2 23/2 |
15/2 17/2 19/2 21/2 23/2 |
||
9 q - 6 q + 4 q - 2 q + q</nowiki></ |
9 q - 6 q + 4 q - 2 q + q</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
| ⚫ | |||
q + q + 2 q + q + 4 q + q + 4 q + 2 q + q - 3 q - |
q + q + 2 q + q + 4 q + q + 4 q + 2 q + q - 3 q - |
||
26 28 30 34 |
26 28 30 34 |
||
q - 2 q - q - q</nowiki></ |
q - 2 q - q - q</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
| ⚫ | |||
2 4 1 1 4 z 9 z z 4 z 4 z 9 z 3 z |
2 4 1 1 4 z 9 z z 4 z 4 z 9 z 3 z |
||
---- - ---- + ---- + ---- + --- - --- + -- + --- + ---- - ---- - ---- + |
---- - ---- + ---- + ---- + --- - --- + -- + --- + ---- - ---- - ---- + |
||
| Line 131: | Line 94: | ||
---- + -- - ---- - ---- + -- - -- - -- |
---- + -- - ---- - ---- + -- - -- - -- |
||
3 9 7 5 3 7 5 |
3 9 7 5 3 7 5 |
||
a a a a a a a</nowiki></ |
a a a a a a a</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
| ⚫ | |||
--- + a - -- - -- + a + ---- + ---- + ---- - ---- - --- - ---- - |
--- + a - -- - -- + a + ---- + ---- + ---- - ---- - --- - ---- - |
||
12 8 6 9 7 5 3 11 9 |
12 8 6 9 7 5 3 11 9 |
||
| Line 171: | Line 129: | ||
---- - -- - ---- - ---- - ---- - ---- - --- - --- |
---- - -- - ---- - ---- - ---- - ---- - --- - --- |
||
10 8 4 9 7 5 8 6 |
10 8 4 9 7 5 8 6 |
||
a a a a a a a a</nowiki></ |
a a a a a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 111]][q, t]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 |
|||
4 6 -2 q q 6 8 8 2 10 2 |
4 6 -2 q q 6 8 8 2 10 2 |
||
4 q + 3 q + t + -- + -- + 4 q t + 2 q t + 5 q t + 4 q t + |
4 q + 3 q + t + -- + -- + 4 q t + 2 q t + 5 q t + 4 q t + |
||
| Line 187: | Line 140: | ||
16 6 18 6 18 7 20 7 20 8 22 8 24 9 |
16 6 18 6 18 7 20 7 20 8 22 8 24 9 |
||
3 q t + 3 q t + q t + 3 q t + q t + q t + q t</nowiki></ |
3 q t + 3 q t + q t + 3 q t + q t + q t + q t</nowiki></pre></td></tr> |
||
</table> }} |
</table> }} |
||
Latest revision as of 02:32, 3 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a111's Link Presentations]
| Planar diagram presentation | X6172 X14,4,15,3 X16,8,17,7 X18,10,19,9 X22,14,5,13 X8,18,9,17 X10,22,11,21 X20,12,21,11 X12,20,13,19 X2536 X4,16,1,15 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 3, -6, 4, -7, 8, -9, 5, -2, 11, -3, 6, -4, 9, -8, 7, -5} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(u-1) (v-1) \left(2 v^4-v^3+2 v^2-v+2\right)}{\sqrt{u} v^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{23/2}-2 q^{21/2}+4 q^{19/2}-6 q^{17/2}+9 q^{15/2}-10 q^{13/2}+9 q^{11/2}-9 q^{9/2}+6 q^{7/2}-5 q^{5/2}+2 q^{3/2}-\sqrt{q} }[/math] (db) |
| Signature | 5 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^5 a^{-9} +4 z^3 a^{-9} +4 z a^{-9} +2 a^{-9} z^{-1} -z^7 a^{-7} -5 z^5 a^{-7} -9 z^3 a^{-7} -9 z a^{-7} -4 a^{-7} z^{-1} -z^7 a^{-5} -4 z^5 a^{-5} -3 z^3 a^{-5} +z a^{-5} + a^{-5} z^{-1} +z^5 a^{-3} +4 z^3 a^{-3} +4 z a^{-3} + a^{-3} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^{10} a^{-6} -z^{10} a^{-8} -2 z^9 a^{-5} -5 z^9 a^{-7} -3 z^9 a^{-9} -2 z^8 a^{-4} -z^8 a^{-8} -3 z^8 a^{-10} -z^7 a^{-3} +6 z^7 a^{-5} +21 z^7 a^{-7} +11 z^7 a^{-9} -3 z^7 a^{-11} +8 z^6 a^{-4} +11 z^6 a^{-6} +12 z^6 a^{-8} +6 z^6 a^{-10} -3 z^6 a^{-12} +5 z^5 a^{-3} -z^5 a^{-5} -35 z^5 a^{-7} -22 z^5 a^{-9} +5 z^5 a^{-11} -2 z^5 a^{-13} -7 z^4 a^{-4} -18 z^4 a^{-6} -22 z^4 a^{-8} -4 z^4 a^{-10} +6 z^4 a^{-12} -z^4 a^{-14} -8 z^3 a^{-3} -2 z^3 a^{-5} +35 z^3 a^{-7} +22 z^3 a^{-9} -4 z^3 a^{-11} +3 z^3 a^{-13} -z^2 a^{-4} +15 z^2 a^{-6} +20 z^2 a^{-8} -4 z^2 a^{-10} -6 z^2 a^{-12} +2 z^2 a^{-14} +5 z a^{-3} -3 z a^{-5} -17 z a^{-7} -10 z a^{-9} -z a^{-11} + a^{-4} -5 a^{-6} -6 a^{-8} + a^{-10} +2 a^{-12} - a^{-3} z^{-1} + a^{-5} z^{-1} +4 a^{-7} z^{-1} +2 a^{-9} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



