L11n284: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| (3 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was |
<!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit! |
||
<!-- --> <!-- |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
--> |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
|||
<!-- Almost certainly, you want to edit [[Template:Link Page]], which actually produces this page. |
|||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
| Line 7: | Line 16: | ||
k = 284 | |
k = 284 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-10:2,-1,5,-3,6,-11:-8,-2,4,-5,10,9,-7,-6,11,8,-9,7/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-10:2,-1,5,-3,6,-11:-8,-2,4,-5,10,9,-7,-6,11,8,-9,7/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
</table> | |
|||
khovanov_table = <table border=1> |
khovanov_table = <table border=1> |
||
<tr align=center> |
<tr align=center> |
||
| Line 32: | Line 47: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, NonAlternating, 284]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, NonAlternating, 284]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
| Line 50: | Line 65: | ||
{-8, -2, 4, -5, 10, 9, -7, -6, 11, 8, -9, 7}]</nowiki></pre></td></tr> |
{-8, -2, 4, -5, 10, 9, -7, -6, 11, 8, -9, 7}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Link[11, NonAlternating, 284]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Link[11, NonAlternating, 284]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, 2, 2, 3, 3, 2, -1, 3, -2, 3, -2, 3, -2}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 284]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11n284_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[7]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 284]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11n284_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[7]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, NonAlternating, 284]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, NonAlternating, 284]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 1 2 3 4 5 6 7 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Link[11, NonAlternating, 284]], KnotSignature[Link[11, NonAlternating, 284]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Infinity, 4}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, NonAlternating, 284]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 1 2 3 4 5 6 7 |
|||
3 - - - 3 q + 6 q - 4 q + 6 q - 4 q + 3 q - 2 q |
3 - - - 3 q + 6 q - 4 q + 6 q - 4 q + 3 q - 2 q |
||
q</nowiki></pre></td></tr> |
q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[11, NonAlternating, 284]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 2 4 6 8 10 12 14 18 |
||
1 - q + q + 3 q + 5 q + 7 q + 9 q + 5 q + 6 q - q - |
1 - q + q + 3 q + 5 q + 7 q + 9 q + 5 q + 6 q - q - |
||
20 22 24 26 28 |
20 22 24 26 28 |
||
3 q - 3 q - q - 2 q + q</nowiki></pre></td></tr> |
3 q - 3 q - q - 2 q + q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[11, NonAlternating, 284]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 |
||
2 5 3 1 4 5 2 z 5 z 6 z |
2 5 3 1 4 5 2 z 5 z 6 z |
||
-- - -- + -- - ----- + ----- - ----- + ----- + -- - ---- + ---- - |
-- - -- + -- - ----- + ----- - ----- + ----- + -- - ---- + ---- - |
||
| Line 82: | Line 91: | ||
2 6 4 2 6 4 2 4 |
2 6 4 2 6 4 2 4 |
||
a a a a a a a a</nowiki></pre></td></tr> |
a a a a a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[11, NonAlternating, 284]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>-2 4 3 1 4 5 2 1 5 9 |
||
-- - -- - -- + ----- + ----- + ----- + ----- - ---- - ---- - ---- - |
-- - -- - -- + ----- + ----- + ----- + ----- - ---- - ---- - ---- - |
||
6 4 2 8 2 6 2 4 2 2 2 9 7 5 |
6 4 2 8 2 6 2 4 2 2 2 9 7 5 |
||
| Line 111: | Line 120: | ||
4 2 5 3 |
4 2 5 3 |
||
a a a a</nowiki></pre></td></tr> |
a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, NonAlternating, 284]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 |
||
{0, --} |
|||
6</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, NonAlternating, 284]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 |
|||
3 5 1 2 q q 2 q 5 7 5 2 |
3 5 1 2 q q 2 q 5 7 5 2 |
||
5 q + 3 q + ----- + ---- + -- + - + ---- + 2 q t + 3 q t + q t + |
5 q + 3 q + ----- + ---- + -- + - + ---- + 2 q t + 3 q t + q t + |
||
Latest revision as of 02:37, 3 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n284's Link Presentations]
| Planar diagram presentation | X6172 X12,6,13,5 X8493 X2,14,3,13 X14,7,15,8 X18,10,19,9 X17,11,18,22 X11,21,12,20 X21,17,22,16 X4,15,1,16 X10,20,5,19 |
| Gauss code | {1, -4, 3, -10}, {2, -1, 5, -3, 6, -11}, {-8, -2, 4, -5, 10, 9, -7, -6, 11, 8, -9, 7} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(t(1)-1) (t(2)-1) (t(3)-1) \left(t(2) t(3)^3+1\right)}{\sqrt{t(1)} t(2) t(3)^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -2 q^7+3 q^6-4 q^5+6 q^4-4 q^3+6 q^2-3 q- q^{-1} +3 }[/math] (db) |
| Signature | 4 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^2 a^{-8} - a^{-8} z^{-2} -z^6 a^{-6} -5 z^4 a^{-6} -5 z^2 a^{-6} +4 a^{-6} z^{-2} +2 a^{-6} +z^8 a^{-4} +6 z^6 a^{-4} +11 z^4 a^{-4} +6 z^2 a^{-4} -5 a^{-4} z^{-2} -5 a^{-4} -z^6 a^{-2} -4 z^4 a^{-2} -2 z^2 a^{-2} +2 a^{-2} z^{-2} +3 a^{-2} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ 2 z^9 a^{-3} +2 z^9 a^{-5} +3 z^8 a^{-2} +7 z^8 a^{-4} +4 z^8 a^{-6} +z^7 a^{-1} -7 z^7 a^{-3} -6 z^7 a^{-5} +2 z^7 a^{-7} -15 z^6 a^{-2} -35 z^6 a^{-4} -20 z^6 a^{-6} -4 z^5 a^{-1} +z^5 a^{-3} -3 z^5 a^{-5} -8 z^5 a^{-7} +21 z^4 a^{-2} +49 z^4 a^{-4} +29 z^4 a^{-6} +z^4 a^{-8} +3 z^3 a^{-1} +4 z^3 a^{-3} +7 z^3 a^{-5} +6 z^3 a^{-7} -9 z^2 a^{-2} -21 z^2 a^{-4} -14 z^2 a^{-6} -2 z^2 a^{-8} +5 z a^{-3} +9 z a^{-5} +5 z a^{-7} +z a^{-9} -3 a^{-2} -4 a^{-4} -2 a^{-6} -5 a^{-3} z^{-1} -9 a^{-5} z^{-1} -5 a^{-7} z^{-1} - a^{-9} z^{-1} +2 a^{-2} z^{-2} +5 a^{-4} z^{-2} +4 a^{-6} z^{-2} + a^{-8} z^{-2} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



