L11a391: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 16: | Line 16: | ||
k = 391 | |
k = 391 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:10,-1,3,-4:11,-2,5,-8,7,-9,4,-3,6,-5,8,-7,9,-6/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:10,-1,3,-4:11,-2,5,-8,7,-9,4,-3,6,-5,8,-7,9,-6/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]]</td></tr> |
||
| Line 52: | Line 52: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 391]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 391]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
Latest revision as of 02:40, 3 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a391's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X16,7,17,8 X8,15,5,16 X18,11,19,12 X22,17,9,18 X20,13,21,14 X12,19,13,20 X14,21,15,22 X2536 X4,9,1,10 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 3, -4}, {11, -2, 5, -8, 7, -9, 4, -3, 6, -5, 8, -7, 9, -6} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{t(1) t(3)^5+t(2) t(3)^5-t(3)^5-3 t(1) t(3)^4+2 t(1) t(2) t(3)^4-3 t(2) t(3)^4+2 t(3)^4+3 t(1) t(3)^3-2 t(1) t(2) t(3)^3+3 t(2) t(3)^3-2 t(3)^3-3 t(1) t(3)^2+2 t(1) t(2) t(3)^2-3 t(2) t(3)^2+2 t(3)^2+3 t(1) t(3)-2 t(1) t(2) t(3)+3 t(2) t(3)-2 t(3)-t(1)+t(1) t(2)-t(2)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ - q^{-14} +2 q^{-13} -6 q^{-12} +9 q^{-11} -12 q^{-10} +15 q^{-9} -14 q^{-8} +14 q^{-7} -8 q^{-6} +7 q^{-5} -3 q^{-4} + q^{-3} }[/math] (db) |
| Signature | -6 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -2 a^{14} z^{-2} -a^{14}+4 a^{12} z^2+7 a^{12} z^{-2} +12 a^{12}-6 a^{10} z^4-23 a^{10} z^2-8 a^{10} z^{-2} -24 a^{10}+3 a^8 z^6+14 a^8 z^4+21 a^8 z^2+3 a^8 z^{-2} +13 a^8+a^6 z^6+3 a^6 z^4+a^6 z^2 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{17} z^5-3 a^{17} z^3+3 a^{17} z-a^{17} z^{-1} +2 a^{16} z^6-3 a^{16} z^4+a^{16}+3 a^{15} z^7-3 a^{15} z^5-2 a^{15} z^3+3 a^{15} z-a^{15} z^{-1} +3 a^{14} z^8-2 a^{14} z^6+2 a^{14} z^4-9 a^{14} z^2-2 a^{14} z^{-2} +7 a^{14}+2 a^{13} z^9+3 a^{13} z^7-13 a^{13} z^5+22 a^{13} z^3-21 a^{13} z+7 a^{13} z^{-1} +a^{12} z^{10}+5 a^{12} z^8-18 a^{12} z^6+33 a^{12} z^4-35 a^{12} z^2-7 a^{12} z^{-2} +22 a^{12}+6 a^{11} z^9-11 a^{11} z^7-8 a^{11} z^5+46 a^{11} z^3-45 a^{11} z+15 a^{11} z^{-1} +a^{10} z^{10}+8 a^{10} z^8-38 a^{10} z^6+62 a^{10} z^4-51 a^{10} z^2-8 a^{10} z^{-2} +28 a^{10}+4 a^9 z^9-8 a^9 z^7-7 a^9 z^5+27 a^9 z^3-24 a^9 z+8 a^9 z^{-1} +6 a^8 z^8-23 a^8 z^6+31 a^8 z^4-24 a^8 z^2-3 a^8 z^{-2} +13 a^8+3 a^7 z^7-8 a^7 z^5+2 a^7 z^3+a^6 z^6-3 a^6 z^4+a^6 z^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



