L11a96: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 16: | Line 16: | ||
k = 96 | |
k = 96 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:10,-1,3,-9,6,-8,7,-2,11,-7,4,-5,8,-6,9,-3,5,-4/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:10,-1,3,-9,6,-8,7,-2,11,-7,4,-5,8,-6,9,-3,5,-4/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]]</td></tr> |
||
| Line 53: | Line 53: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 96]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 96]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
Latest revision as of 02:41, 3 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a96's Link Presentations]
| Planar diagram presentation | X6172 X12,4,13,3 X20,8,21,7 X22,15,5,16 X16,21,17,22 X18,10,19,9 X14,12,15,11 X10,18,11,17 X8,20,9,19 X2536 X4,14,1,13 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 3, -9, 6, -8, 7, -2, 11, -7, 4, -5, 8, -6, 9, -3, 5, -4} |
| A Braid Representative | ||||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(t(1)-1) (t(2)-1) \left(2 t(2)^2-7 t(2)+2\right)}{\sqrt{t(1)} t(2)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -9 q^{9/2}+12 q^{7/2}-\frac{1}{q^{7/2}}-14 q^{5/2}+\frac{2}{q^{5/2}}+14 q^{3/2}-\frac{6}{q^{3/2}}+q^{15/2}-3 q^{13/2}+5 q^{11/2}-12 \sqrt{q}+\frac{9}{\sqrt{q}} }[/math] (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z a^{-7} -2 z^3 a^{-5} -2 z a^{-5} - a^{-5} z^{-1} +z^5 a^{-3} +z^3 a^{-3} +a^3 z+3 z a^{-3} +a^3 z^{-1} +2 a^{-3} z^{-1} +z^5 a^{-1} -2 a z^3-2 a z-z a^{-1} -a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^{10} a^{-2} -z^{10} a^{-4} -2 z^9 a^{-1} -5 z^9 a^{-3} -3 z^9 a^{-5} -3 z^8 a^{-2} -4 z^8 a^{-4} -4 z^8 a^{-6} -3 z^8-3 a z^7-2 z^7 a^{-1} +9 z^7 a^{-3} +5 z^7 a^{-5} -3 z^7 a^{-7} -2 a^2 z^6+7 z^6 a^{-2} +16 z^6 a^{-4} +12 z^6 a^{-6} -z^6 a^{-8} +2 z^6-a^3 z^5+3 a z^5+8 z^5 a^{-1} -z^5 a^{-3} +5 z^5 a^{-5} +10 z^5 a^{-7} +3 a^2 z^4-9 z^4 a^{-2} -17 z^4 a^{-4} -9 z^4 a^{-6} +3 z^4 a^{-8} -z^4+3 a^3 z^3+2 a z^3-11 z^3 a^{-1} -15 z^3 a^{-3} -13 z^3 a^{-5} -8 z^3 a^{-7} +7 z^2 a^{-2} +5 z^2 a^{-4} +2 z^2 a^{-6} -z^2 a^{-8} +5 z^2-3 a^3 z-3 a z+8 z a^{-1} +13 z a^{-3} +7 z a^{-5} +2 z a^{-7} -a^2-3 a^{-2} - a^{-4} -2+a^3 z^{-1} +a z^{-1} - a^{-1} z^{-1} -2 a^{-3} z^{-1} - a^{-5} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



