L10a62: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| (2 intermediate revisions by 2 users not shown) | |||
| Line 16: | Line 16: | ||
k = 62 | |
k = 62 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,2,-7,6,-10:4,-1,3,-2,5,-9,8,-6,7,-5,9,-8,10,-3/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,2,-7,6,-10:4,-1,3,-2,5,-9,8,-6,7,-5,9,-8,10,-3/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
</table> | |
|||
khovanov_table = <table border=1> |
khovanov_table = <table border=1> |
||
<tr align=center> |
<tr align=center> |
||
| Line 43: | Line 49: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[10, Alternating, 62]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[10, Alternating, 62]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> |
||
| Line 58: | Line 64: | ||
{4, -1, 3, -2, 5, -9, 8, -6, 7, -5, 9, -8, 10, -3}]</nowiki></pre></td></tr> |
{4, -1, 3, -2, 5, -9, 8, -6, 7, -5, 9, -8, 10, -3}]</nowiki></pre></td></tr> |
||
<tr |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Link[10, Alternating, 62]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, 2, -3, 2, -3, 2, -1, 2, 2, 2}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[10, Alternating, 62]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L10a62_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[7]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[10, Alternating, 62]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[10, Alternating, 62]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(5/2) 2 5 3/2 5/2 7/2 |
|||
-q + ---- - ------- + 6 Sqrt[q] - 9 q + 9 q - 9 q + |
-q + ---- - ------- + 6 Sqrt[q] - 9 q + 9 q - 9 q + |
||
3/2 Sqrt[q] |
3/2 Sqrt[q] |
||
| Line 69: | Line 77: | ||
9/2 11/2 13/2 15/2 |
9/2 11/2 13/2 15/2 |
||
8 q - 5 q + 3 q - q</nowiki></pre></td></tr> |
8 q - 5 q + 3 q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[10, Alternating, 62]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -8 -6 -4 3 2 4 8 10 14 16 |
||
1 + q + q + q + -- + 3 q + 2 q + 2 q - 3 q - 2 q - q + |
1 + q + q + q + -- + 3 q + 2 q + 2 q - 3 q - 2 q - q + |
||
2 |
2 |
||
| Line 77: | Line 85: | ||
18 20 22 |
18 20 22 |
||
q - q + q</nowiki></pre></td></tr> |
q - q + q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[10, Alternating, 62]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 3 3 |
||
1 3 2 a 2 z 7 z 9 z 3 z 9 z 8 z |
1 3 2 a 2 z 7 z 9 z 3 z 9 z 8 z |
||
---- - --- + --- - --- + --- - --- + 3 a z - ---- + ---- - ---- + |
---- - --- + --- - --- + --- - --- + 3 a z - ---- + ---- - ---- + |
||
| Line 89: | Line 97: | ||
5 3 a 3 |
5 3 a 3 |
||
a a a</nowiki></pre></td></tr> |
a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[10, Alternating, 62]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
||
-4 3 1 3 2 a 4 z 13 z 16 z 2 z |
-4 3 1 3 2 a 4 z 13 z 16 z 2 z |
||
3 + a + -- - ---- - --- - --- + --- + ---- + ---- + 7 a z - z + -- - |
3 + a + -- - ---- - --- - --- + --- + ---- + ---- + 7 a z - z + -- - |
||
| Line 119: | Line 127: | ||
4 2 3 a |
4 2 3 a |
||
a a a</nowiki></pre></td></tr> |
a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[10, Alternating, 62]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
||
2 4 1 1 1 2 4 3 3 q 4 |
2 4 1 1 1 2 4 3 3 q 4 |
||
6 q + 4 q + ----- + ----- + ----- + -- + ----- + - + ---- + 4 q t + |
6 q + 4 q + ----- + ----- + ----- + -- + ----- + - + ---- + 4 q t + |
||
Latest revision as of 02:44, 3 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a62's Link Presentations]
| Planar diagram presentation | X8192 X10,4,11,3 X20,10,7,9 X2738 X16,12,17,11 X14,5,15,6 X4,15,5,16 X18,14,19,13 X12,18,13,17 X6,20,1,19 |
| Gauss code | {1, -4, 2, -7, 6, -10}, {4, -1, 3, -2, 5, -9, 8, -6, 7, -5, 9, -8, 10, -3} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{u^2 v^4-2 u^2 v^3+2 u^2 v^2-2 u^2 v+u^2-2 u v^4+3 u v^3-3 u v^2+3 u v-2 u+v^4-2 v^3+2 v^2-2 v+1}{u v^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ 8 q^{9/2}-9 q^{7/2}+9 q^{5/2}-\frac{1}{q^{5/2}}-9 q^{3/2}+\frac{2}{q^{3/2}}-q^{15/2}+3 q^{13/2}-5 q^{11/2}+6 \sqrt{q}-\frac{5}{\sqrt{q}} }[/math] (db) |
| Signature | 3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^5 a^{-5} -3 z^3 a^{-5} -2 z a^{-5} +z^7 a^{-3} +5 z^5 a^{-3} +9 z^3 a^{-3} +7 z a^{-3} + a^{-3} z^{-1} -2 z^5 a^{-1} +a z^3-8 z^3 a^{-1} +3 a z-9 z a^{-1} +2 a z^{-1} -3 a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^3 a^{-9} +3 z^4 a^{-8} -z^2 a^{-8} +5 z^5 a^{-7} -3 z^3 a^{-7} +7 z^6 a^{-6} -10 z^4 a^{-6} +4 z^2 a^{-6} +7 z^7 a^{-5} -14 z^5 a^{-5} +9 z^3 a^{-5} -4 z a^{-5} +4 z^8 a^{-4} -3 z^6 a^{-4} -13 z^4 a^{-4} +11 z^2 a^{-4} - a^{-4} +z^9 a^{-3} +8 z^7 a^{-3} -35 z^5 a^{-3} +36 z^3 a^{-3} -13 z a^{-3} + a^{-3} z^{-1} +6 z^8 a^{-2} -18 z^6 a^{-2} +8 z^4 a^{-2} +7 z^2 a^{-2} -3 a^{-2} +z^9 a^{-1} +a z^7+2 z^7 a^{-1} -5 a z^5-21 z^5 a^{-1} +9 a z^3+32 z^3 a^{-1} -7 a z-16 z a^{-1} +2 a z^{-1} +3 a^{-1} z^{-1} +2 z^8-8 z^6+8 z^4+z^2-3 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



