L11a396: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| (One intermediate revision by the same user not shown) | |||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- --> |
<!-- <math>\text{Null}</math> --> |
||
<!-- --> |
<!-- <math>\text{Null}</math> --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
| Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- --> |
<!-- <math>\text{Null}</math> --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = |
t = a | |
||
k = 396 | |
k = 396 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:10,-1,8,-7:11,-2,4,-5,3,-9,6,-8,7,-6,9,-4,5,-3/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:10,-1,8,-7:11,-2,4,-5,3,-9,6,-8,7,-6,9,-4,5,-3/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
| ⚫ | |||
khovanov_table = <table border=1> |
khovanov_table = <table border=1> |
||
<tr align=center> |
<tr align=center> |
||
| Line 44: | Line 52: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2 |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
| ⚫ | |||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Length[Skeleton[Link[11, Alternating, 396]]]</nowiki></pre></td></tr> |
||
<td>< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
||
| ⚫ | |||
<tr align=left> |
|||
< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[22, 14, 9, 13], X[20, 12, 21, 11], |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[11, Alternating, 396]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[22, 14, 9, 13], X[20, 12, 21, 11], |
|||
X[12, 22, 13, 21], X[18, 16, 19, 15], X[8, 18, 5, 17], |
X[12, 22, 13, 21], X[18, 16, 19, 15], X[8, 18, 5, 17], |
||
X[16, 8, 17, 7], X[14, 20, 15, 19], X[2, 5, 3, 6], X[4, 9, 1, 10]]</nowiki></ |
X[16, 8, 17, 7], X[14, 20, 15, 19], X[2, 5, 3, 6], X[4, 9, 1, 10]]</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
{11, -2, 4, -5, 3, -9, 6, -8, 7, -6, 9, -4, 5, -3}]</nowiki></pre></td></tr> |
|||
| ⚫ | |||
<tr align=left> |
|||
< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[6, {1, 2, 3, 4, -3, 2, 2, 2, -1, -3, 5, 4, -3, 2, 2, -3, -4, -5, -4, |
||
| ⚫ | |||
-3, 2}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 396]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a396_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[7]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, Alternating, 396]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2</nowiki></pre></td></tr> |
||
<td>< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 396]][q]</nowiki></pre></td></tr> |
||
| ⚫ | |||
<tr align=left><td></td><td>[[Image:L11a396_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
| ⚫ | |||
-6 + q - q + - + 12 q - 14 q + 15 q - 14 q + 11 q - 8 q + |
-6 + q - q + - + 12 q - 14 q + 15 q - 14 q + 11 q - 8 q + |
||
q |
q |
||
7 8 |
7 8 |
||
4 q - q</nowiki></ |
4 q - q</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
| ⚫ | |||
6 + q + -- + -- + -- + -- + 8 q + 2 q - 2 q - 3 q - 4 q + |
6 + q + -- + -- + -- + -- + 8 q + 2 q - 2 q - 3 q - 4 q + |
||
8 6 4 2 |
8 6 4 2 |
||
| Line 117: | Line 88: | ||
16 18 20 22 24 |
16 18 20 22 24 |
||
2 q - q - q + 2 q - q</nowiki></ |
2 q - q - q + 2 q - q</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
| ⚫ | |||
2 8 2 5 1 4 2 a 2 z 6 z |
2 8 2 5 1 4 2 a 2 z 6 z |
||
-9 - -- + -- + 3 a - -- - ----- + ----- + ---- - 7 z - -- + ---- + |
-9 - -- + -- + 3 a - -- - ----- + ----- + ---- - 7 z - -- + ---- + |
||
| Line 134: | Line 100: | ||
a z - 2 z - -- + ---- + ---- + -- + -- |
a z - 2 z - -- + ---- + ---- + -- + -- |
||
6 4 2 4 2 |
6 4 2 4 2 |
||
a a a a a</nowiki></ |
a a a a a</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
| ⚫ | |||
2 10 2 5 1 4 2 a 1 5 9 |
2 10 2 5 1 4 2 a 1 5 9 |
||
-14 - -- - -- - 7 a + -- + ----- + ----- + ---- - ---- - ---- - --- - |
-14 - -- - -- - 7 a + -- + ----- + ----- + ---- - ---- - ---- - --- - |
||
| Line 175: | Line 136: | ||
-- + a z + z + ---- + ---- - -- + ---- + ---- + -- + --- + --- |
-- + a z + z + ---- + ---- - -- + ---- + ---- + -- + --- + --- |
||
a 6 4 2 5 3 a 4 2 |
a 6 4 2 5 3 a 4 2 |
||
a a a a a a a</nowiki></ |
a a a a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 396]][q, t]</nowiki></pre></td></tr> |
|||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
| ⚫ | |||
10 q + 5 q + ----- + ----- + ----- + ----- + ---- + --- + --- + |
10 q + 5 q + ----- + ----- + ----- + ----- + ---- + --- + --- + |
||
7 4 5 4 5 3 3 2 2 q t t |
7 4 5 4 5 3 3 2 2 q t t |
||
| Line 191: | Line 147: | ||
11 4 11 5 13 5 13 6 15 6 17 7 |
11 4 11 5 13 5 13 6 15 6 17 7 |
||
6 q t + 3 q t + 5 q t + q t + 3 q t + q t</nowiki></ |
6 q t + 3 q t + 5 q t + q t + 3 q t + q t</nowiki></pre></td></tr> |
||
</table> }} |
</table> }} |
||
Latest revision as of 02:48, 3 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a396's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X22,14,9,13 X20,12,21,11 X12,22,13,21 X18,16,19,15 X8,18,5,17 X16,8,17,7 X14,20,15,19 X2536 X4,9,1,10 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 8, -7}, {11, -2, 4, -5, 3, -9, 6, -8, 7, -6, 9, -4, 5, -3} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{2 u v w^3-3 u v w^2+3 u v w-2 u v-2 u w^3+4 u w^2-4 u w+3 u-3 v w^3+4 v w^2-4 v w+2 v+2 w^3-3 w^2+3 w-2}{\sqrt{u} \sqrt{v} w^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^8+4 q^7-8 q^6+11 q^5-14 q^4+15 q^3-14 q^2+12 q-6+5 q^{-1} - q^{-2} + q^{-3} }[/math] (db) |
| Signature | 2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^4 a^{-6} -z^2 a^{-6} +z^6 a^{-4} +2 z^4 a^{-4} - a^{-4} z^{-2} -2 a^{-4} +z^6 a^{-2} +3 z^4 a^{-2} +a^2 z^2+6 z^2 a^{-2} +2 a^2 z^{-2} +4 a^{-2} z^{-2} +3 a^2+8 a^{-2} -2 z^4-7 z^2-5 z^{-2} -9 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^{10} a^{-2} +z^{10} a^{-4} +z^9 a^{-1} +5 z^9 a^{-3} +4 z^9 a^{-5} -z^8 a^{-2} +5 z^8 a^{-4} +7 z^8 a^{-6} +z^8+a z^7+z^7 a^{-1} -12 z^7 a^{-3} -5 z^7 a^{-5} +7 z^7 a^{-7} +a^2 z^6+8 z^6 a^{-2} -11 z^6 a^{-4} -14 z^6 a^{-6} +4 z^6 a^{-8} +2 z^6-a z^5+20 z^5 a^{-3} +5 z^5 a^{-5} -13 z^5 a^{-7} +z^5 a^{-9} -5 a^2 z^4-17 z^4 a^{-2} +8 z^4 a^{-4} +10 z^4 a^{-6} -6 z^4 a^{-8} -14 z^4-6 a z^3-15 z^3 a^{-1} -19 z^3 a^{-3} -5 z^3 a^{-5} +4 z^3 a^{-7} -z^3 a^{-9} +9 a^2 z^2+15 z^2 a^{-2} +z^2 a^{-4} -3 z^2 a^{-6} +20 z^2+11 a z+21 z a^{-1} +13 z a^{-3} +3 z a^{-5} -7 a^2-10 a^{-2} -2 a^{-4} -14-5 a z^{-1} -9 a^{-1} z^{-1} -5 a^{-3} z^{-1} - a^{-5} z^{-1} +2 a^2 z^{-2} +4 a^{-2} z^{-2} + a^{-4} z^{-2} +5 z^{-2} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



