L11n283: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 16: | Line 16: | ||
k = 283 | |
k = 283 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-10:2,-1,5,-3,-6,11:-8,-2,4,-5,10,9,-7,6,-11,8,-9,7/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-10:2,-1,5,-3,-6,11:-8,-2,4,-5,10,9,-7,6,-11,8,-9,7/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]]</td></tr> |
||
| Line 48: | Line 48: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, NonAlternating, 283]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, NonAlternating, 283]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
Latest revision as of 02:50, 3 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n283's Link Presentations]
| Planar diagram presentation | X6172 X12,6,13,5 X8493 X2,14,3,13 X14,7,15,8 X9,18,10,19 X17,11,18,22 X11,21,12,20 X21,17,22,16 X4,15,1,16 X19,10,20,5 |
| Gauss code | {1, -4, 3, -10}, {2, -1, 5, -3, -6, 11}, {-8, -2, 4, -5, 10, 9, -7, 6, -11, 8, -9, 7} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(u-1) (v-1)^2 (w-1)^2}{\sqrt{u} v w} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^6-4 q^5+6 q^4-9 q^3- q^{-3} +11 q^2+5 q^{-2} -10 q-6 q^{-1} +11 }[/math] (db) |
| Signature | 0 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^4 a^{-4} +z^2 a^{-4} - a^{-4} z^{-2} - a^{-4} -z^6 a^{-2} -3 z^4 a^{-2} -a^2 z^2-2 z^2 a^{-2} +2 a^2 z^{-2} +4 a^{-2} z^{-2} +a^2+4 a^{-2} +2 z^4+2 z^2-5 z^{-2} -4 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ 2 z^9 a^{-1} +2 z^9 a^{-3} +9 z^8 a^{-2} +5 z^8 a^{-4} +4 z^8+2 a z^7+2 z^7 a^{-3} +4 z^7 a^{-5} -28 z^6 a^{-2} -15 z^6 a^{-4} +z^6 a^{-6} -12 z^6-a z^5-8 z^5 a^{-1} -19 z^5 a^{-3} -12 z^5 a^{-5} +5 a^2 z^4+29 z^4 a^{-2} +11 z^4 a^{-4} -2 z^4 a^{-6} +21 z^4+a^3 z^3+a z^3+6 z^3 a^{-1} +13 z^3 a^{-3} +7 z^3 a^{-5} -3 a^2 z^2-12 z^2 a^{-2} -4 z^2 a^{-4} -11 z^2+5 a z+9 z a^{-1} +5 z a^{-3} +z a^{-5} -3 a^2-2 a^{-2} -4-5 a z^{-1} -9 a^{-1} z^{-1} -5 a^{-3} z^{-1} - a^{-5} z^{-1} +2 a^2 z^{-2} +4 a^{-2} z^{-2} + a^{-4} z^{-2} +5 z^{-2} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



