L11a29: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 16: | Line 16: | ||
k = 29 | |
k = 29 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:10,-1,5,-6,3,-2,11,-7,4,-5,8,-9,6,-4,7,-3,9,-8/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:10,-1,5,-6,3,-2,11,-7,4,-5,8,-9,6,-4,7,-3,9,-8/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
| Line 53: | Line 53: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 29]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 29]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
Latest revision as of 02:53, 3 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a29's Link Presentations]
| Planar diagram presentation | X6172 X10,4,11,3 X20,10,21,9 X18,14,19,13 X14,8,15,7 X8,18,9,17 X12,20,13,19 X22,16,5,15 X16,22,17,21 X2536 X4,12,1,11 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 5, -6, 3, -2, 11, -7, 4, -5, 8, -9, 6, -4, 7, -3, 9, -8} |
| A Braid Representative | ||||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(t(1)-1) (t(2)-1) \left(5 t(2)^2-8 t(2)+5\right)}{\sqrt{t(1)} t(2)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ 22 q^{9/2}-21 q^{7/2}+14 q^{5/2}-8 q^{3/2}+q^{21/2}-4 q^{19/2}+10 q^{17/2}-15 q^{15/2}+21 q^{13/2}-24 q^{11/2}+3 \sqrt{q}-\frac{1}{\sqrt{q}} }[/math] (db) |
| Signature | 3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^3 a^{-9} + a^{-9} z^{-1} -z^5 a^{-7} +z^3 a^{-7} +z a^{-7} - a^{-7} z^{-1} -3 z^5 a^{-5} -6 z^3 a^{-5} -5 z a^{-5} -2 a^{-5} z^{-1} -z^5 a^{-3} +z^3 a^{-3} +3 z a^{-3} +2 a^{-3} z^{-1} +z^3 a^{-1} +z a^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -2 z^{10} a^{-6} -2 z^{10} a^{-8} -6 z^9 a^{-5} -13 z^9 a^{-7} -7 z^9 a^{-9} -8 z^8 a^{-4} -16 z^8 a^{-6} -16 z^8 a^{-8} -8 z^8 a^{-10} -6 z^7 a^{-3} -2 z^7 a^{-5} +17 z^7 a^{-7} +9 z^7 a^{-9} -4 z^7 a^{-11} -3 z^6 a^{-2} +11 z^6 a^{-4} +42 z^6 a^{-6} +48 z^6 a^{-8} +19 z^6 a^{-10} -z^6 a^{-12} -z^5 a^{-1} +9 z^5 a^{-3} +23 z^5 a^{-5} +8 z^5 a^{-7} +3 z^5 a^{-9} +8 z^5 a^{-11} +4 z^4 a^{-2} -7 z^4 a^{-4} -37 z^4 a^{-6} -44 z^4 a^{-8} -16 z^4 a^{-10} +2 z^4 a^{-12} +2 z^3 a^{-1} -9 z^3 a^{-3} -31 z^3 a^{-5} -19 z^3 a^{-7} -3 z^3 a^{-9} -4 z^3 a^{-11} -z^2 a^{-2} -2 z^2 a^{-4} +14 z^2 a^{-6} +25 z^2 a^{-8} +9 z^2 a^{-10} -z^2 a^{-12} -z a^{-1} +7 z a^{-3} +15 z a^{-5} +9 z a^{-7} +2 z a^{-9} +2 a^{-4} -4 a^{-6} -9 a^{-8} -4 a^{-10} -2 a^{-3} z^{-1} -2 a^{-5} z^{-1} + a^{-7} z^{-1} + a^{-9} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



