L11a21: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 16: | Line 16: | ||
k = 21 | |
k = 21 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:10,-1,3,-9,4,-2,11,-3,5,-7,6,-8,9,-4,8,-5,7,-6/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:10,-1,3,-9,4,-2,11,-3,5,-7,6,-8,9,-4,8,-5,7,-6/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
| Line 51: | Line 51: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 21]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 21]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
Latest revision as of 02:58, 3 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a21's Link Presentations]
| Planar diagram presentation | X6172 X10,4,11,3 X12,8,13,7 X18,10,19,9 X20,14,21,13 X22,16,5,15 X14,22,15,21 X16,20,17,19 X8,18,9,17 X2536 X4,12,1,11 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 3, -9, 4, -2, 11, -3, 5, -7, 6, -8, 9, -4, 8, -5, 7, -6} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(t(1)-1) (t(2)-1) \left(t(2)^2+1\right) \left(2 t(2)^2-3 t(2)+2\right)}{\sqrt{t(1)} t(2)^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{23/2}-4 q^{21/2}+9 q^{19/2}-13 q^{17/2}+17 q^{15/2}-18 q^{13/2}+17 q^{11/2}-15 q^{9/2}+9 q^{7/2}-6 q^{5/2}+2 q^{3/2}-\sqrt{q} }[/math] (db) |
| Signature | 5 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^7 a^{-5} -z^7 a^{-7} +z^5 a^{-3} -4 z^5 a^{-5} -3 z^5 a^{-7} +z^5 a^{-9} +4 z^3 a^{-3} -6 z^3 a^{-5} -2 z^3 a^{-7} +2 z^3 a^{-9} +5 z a^{-3} -5 z a^{-5} -z a^{-7} +z a^{-9} +2 a^{-3} z^{-1} -2 a^{-5} z^{-1} - a^{-7} z^{-1} + a^{-9} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^4 a^{-14} +4 z^5 a^{-13} -z^3 a^{-13} +9 z^6 a^{-12} -9 z^4 a^{-12} +4 z^2 a^{-12} - a^{-12} +12 z^7 a^{-11} -16 z^5 a^{-11} +7 z^3 a^{-11} -z a^{-11} +10 z^8 a^{-10} -10 z^6 a^{-10} -4 z^4 a^{-10} +4 z^2 a^{-10} +5 z^9 a^{-9} +4 z^7 a^{-9} -22 z^5 a^{-9} +12 z^3 a^{-9} -2 z a^{-9} - a^{-9} z^{-1} +z^{10} a^{-8} +13 z^8 a^{-8} -33 z^6 a^{-8} +19 z^4 a^{-8} -6 z^2 a^{-8} +3 a^{-8} +7 z^9 a^{-7} -11 z^7 a^{-7} -8 z^5 a^{-7} +15 z^3 a^{-7} -4 z a^{-7} - a^{-7} z^{-1} +z^{10} a^{-6} +5 z^8 a^{-6} -21 z^6 a^{-6} +19 z^4 a^{-6} -4 z^2 a^{-6} +2 z^9 a^{-5} -2 z^7 a^{-5} -11 z^5 a^{-5} +20 z^3 a^{-5} -10 z a^{-5} +2 a^{-5} z^{-1} +2 z^8 a^{-4} -7 z^6 a^{-4} +6 z^4 a^{-4} +2 z^2 a^{-4} -3 a^{-4} +z^7 a^{-3} -5 z^5 a^{-3} +9 z^3 a^{-3} -7 z a^{-3} +2 a^{-3} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



