L10a140: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 16: | Line 16: | ||
k = 140 | |
k = 140 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2,3,-7:4,-1,9,-8,10,-3,5,-6:6,-4,2,-9,8,-10,7,-5/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2,3,-7:4,-1,9,-8,10,-3,5,-6:6,-4,2,-9,8,-10,7,-5/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
| Line 48: | Line 48: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[10, Alternating, 140]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[10, Alternating, 140]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> |
||
Latest revision as of 03:00, 3 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
Brunnian link. Presumably the simplest Brunnian link other than the Borromean rings.[1] The second in an infinite series of Brunnian links -- if the blue and yellow loops in the illustration below have only one twist along each side, the result is the Borromean rings; if the blue and yellow loops have three twists along each side, the result is this L10a140 link; if the blue and yellow loops have five twists along each side, the result is a three-loop link with 14 overall crossings, etc.[2] |
Link Presentations
[edit Notes on L10a140's Link Presentations]
| Planar diagram presentation | X6172 X2,16,3,15 X10,4,11,3 X14,6,15,5 X20,12,13,11 X12,14,5,13 X4,19,1,20 X8,17,9,18 X16,7,17,8 X18,9,19,10 |
| Gauss code | {1, -2, 3, -7}, {4, -1, 9, -8, 10, -3, 5, -6}, {6, -4, 2, -9, 8, -10, 7, -5} |
| A Braid Representative | ||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(t(1)-1) (t(2)-1) (t(3)-1) (t(2) t(3)+1)^2}{\sqrt{t(1)} t(2)^{3/2} t(3)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^5+3 q^4-5 q^3+8 q^2-9 q+12-9 q^{-1} +8 q^{-2} -5 q^{-3} +3 q^{-4} - q^{-5} }[/math] (db) |
| Signature | 0 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -a^2 z^6-z^6 a^{-2} -4 a^2 z^4-4 z^4 a^{-2} -4 a^2 z^2-4 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} +z^8+6 z^6+12 z^4+8 z^2-2 z^{-2} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ 2 a z^9+2 z^9 a^{-1} +4 a^2 z^8+4 z^8 a^{-2} +8 z^8+4 a^3 z^7-2 a z^7-2 z^7 a^{-1} +4 z^7 a^{-3} +3 a^4 z^6-11 a^2 z^6-11 z^6 a^{-2} +3 z^6 a^{-4} -28 z^6+a^5 z^5-9 a^3 z^5-2 a z^5-2 z^5 a^{-1} -9 z^5 a^{-3} +z^5 a^{-5} -7 a^4 z^4+14 a^2 z^4+14 z^4 a^{-2} -7 z^4 a^{-4} +42 z^4-2 a^5 z^3+4 a^3 z^3+6 a z^3+6 z^3 a^{-1} +4 z^3 a^{-3} -2 z^3 a^{-5} +2 a^4 z^2-8 a^2 z^2-8 z^2 a^{-2} +2 z^2 a^{-4} -20 z^2+1-2 a z^{-1} -2 a^{-1} z^{-1} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^{-2} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|




