Invariant Definition Table: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
No edit summary |
||
(23 intermediate revisions by 3 users not shown) | |||
Line 3: | Line 3: | ||
<tr> |
<tr> |
||
<th>Invariant name</th> |
<th>Invariant name</th> |
||
<th>KnotInfoTag</th> |
|||
<th>KnotTheory</th> |
<th>KnotTheory</th> |
||
<th> |
<th>KnotTheorySetter</th> |
||
<th>ReadLivingston</th> |
|||
<th>ReadWiki</th> |
<th>ReadWiki</th> |
||
<th>Type</th> |
<th>Type</th> |
||
Line 12: | Line 12: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Crossings</td> |
<!-- Invariant name --> <td>Crossings</td> |
||
<!-- KnotInfoTag = --> <td></td> |
|||
<!-- KnotTheory = --> <td>Crossings</td> |
<!-- KnotTheory = --> <td>Crossings</td> |
||
<!-- |
<!-- KnotTheorySetter = --> <td></td> |
||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Link Presentation</td> |
<!-- Type = --> <td>Link Presentation</td> |
||
Line 21: | Line 21: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Knot Number</td> |
<!-- Invariant name --> <td>Knot Number</td> |
||
<!-- KnotInfoTag = --> <td></td> |
|||
<!-- KnotTheory = --> <td>KnotNumber</td> |
<!-- KnotTheory = --> <td>KnotNumber</td> |
||
<!-- |
<!-- KnotTheorySetter = --> <td></td> |
||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Link Presentation</td> |
<!-- Type = --> <td>Link Presentation</td> |
||
Line 30: | Line 30: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Knotilus URL</td> |
<!-- Invariant name --> <td>Knotilus URL</td> |
||
<!-- |
<!-- KnotInfoTag = --> <td></td> |
||
<!-- |
<!-- KnotTheory = --> <td>"["<>KnotilusURL[#]<>" "<>NameString[#]<>"'s page]"&</td> |
||
<!-- |
<!-- KnotTheorySetter = --> <td></td> |
||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Navigation</td> |
<!-- Type = --> <td>Navigation</td> |
||
Line 39: | Line 39: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Next Knot</td> |
<!-- Invariant name --> <td>Next Knot</td> |
||
<!-- KnotInfoTag = --> <td></td> |
|||
<!-- KnotTheory = --> <td>NextKnot</td> |
<!-- KnotTheory = --> <td>NextKnot</td> |
||
<!-- |
<!-- KnotTheorySetter = --> <td></td> |
||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td>Knot</td> |
<!-- ReadWiki = --> <td>Knot</td> |
||
<!-- Type = --> <td>Navigation</td> |
<!-- Type = --> <td>Navigation</td> |
||
Line 48: | Line 48: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Previous Knot</td> |
<!-- Invariant name --> <td>Previous Knot</td> |
||
<!-- KnotInfoTag = --> <td></td> |
|||
<!-- KnotTheory = --> <td>PreviousKnot</td> |
<!-- KnotTheory = --> <td>PreviousKnot</td> |
||
<!-- |
<!-- KnotTheorySetter = --> <td></td> |
||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td>Knot</td> |
<!-- ReadWiki = --> <td>Knot</td> |
||
<!-- Type = --> <td>Navigation</td> |
<!-- Type = --> <td>Navigation</td> |
||
Line 57: | Line 57: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Gauss Code</td> |
<!-- Invariant name --> <td>Gauss Code</td> |
||
<!-- KnotInfoTag = --> <td></td> |
|||
<!-- KnotTheory = --> <td>GaussCode</td> |
<!-- KnotTheory = --> <td>GaussCode</td> |
||
<!-- |
<!-- KnotTheorySetter = --> <td></td> |
||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td>GaussCode</td> |
<!-- ReadWiki = --> <td>GaussCode</td> |
||
<!-- Type = --> <td>Link Presentation</td> |
<!-- Type = --> <td>Link Presentation</td> |
||
Line 66: | Line 66: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Planar Diagram</td> |
<!-- Invariant name --> <td>Planar Diagram</td> |
||
<!-- KnotInfoTag = --> <td></td> |
|||
<!-- KnotTheory = --> <td>PD</td> |
<!-- KnotTheory = --> <td>PD</td> |
||
<!-- |
<!-- KnotTheorySetter = --> <td></td> |
||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td>PD</td> |
<!-- ReadWiki = --> <td>PD</td> |
||
<!-- Type = --> <td>Link Presentation</td> |
<!-- Type = --> <td>Link Presentation</td> |
||
Line 75: | Line 75: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Dowker-Thistlethwaite Code</td> |
<!-- Invariant name --> <td>Dowker-Thistlethwaite Code</td> |
||
<!-- KnotInfoTag = --> <td></td> |
|||
<!-- KnotTheory = --> <td>DTCode</td> |
<!-- KnotTheory = --> <td>DTCode</td> |
||
<!-- |
<!-- KnotTheorySetter = --> <td></td> |
||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td>DTCode</td> |
<!-- ReadWiki = --> <td>DTCode</td> |
||
<!-- Type = --> <td>Knot Presentation</td> |
<!-- Type = --> <td>Knot Presentation</td> |
||
<!-- WikiPage = --> <td>DT_Code</td> |
<!-- WikiPage = --> <td>DT_Code</td> |
||
</tr> |
|||
<tr> |
|||
<!-- Invariant name --> <td>Braid Word</td> |
|||
<!-- KnotInfoTag = --> <td></td> |
|||
<!-- KnotTheory = --> <td>BR[#]&</td> |
|||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
|||
<!-- Type = --> <td>Knot Presentation</td> |
|||
<!-- WikiPage = --> <td>BraidWord</td> |
|||
</tr> |
|||
<tr> |
|||
<!-- Invariant name --> <td>Minimal Braid Length</td> |
|||
<!-- KnotInfoTag = --> <td></td> |
|||
<!-- KnotTheory = --> <td>Crossings[BR[#]]&</td> |
|||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
|||
<!-- Type = --> <td>Knot Presentation</td> |
|||
<!-- WikiPage = --> <td>MinimalBraidLength</td> |
|||
</tr> |
|||
<tr> |
|||
<!-- Invariant name --> <td>Minimal Braid Width</td> |
|||
<!-- KnotInfoTag = --> <td></td> |
|||
<!-- KnotTheory = --> <td>First[BR[#]]&</td> |
|||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
|||
<!-- Type = --> <td>Knot Presentation</td> |
|||
<!-- WikiPage = --> <td>MinimalBraidWidth</td> |
|||
</tr> |
|||
<tr> |
|||
<!-- Invariant name --> <td>Braid Index</td> |
|||
<!-- KnotInfoTag = --> <td></td> |
|||
<!-- KnotTheory = --> <td>BraidIndex</td> |
|||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
|||
<!-- Type = --> <td>Knot Presentation</td> |
|||
<!-- WikiPage = --> <td>BraidIndex</td> |
|||
</tr> |
|||
<tr> |
|||
<!-- Invariant name --> <td>Braid Plot</td> |
|||
<!-- KnotInfoTag = --> <td></td> |
|||
<!-- KnotTheory = --> <td>BraidPlot[CollapseBraid[BR[#]], Mode -> "Wiki", Images -> {"BraidPart0.gif", "BraidPart1.gif", "BraidPart2.gif", "BraidPart3.gif", "BraidPart4.gif"}]&</td> |
|||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
|||
<!-- Type = --> <td>Knot Presentation</td> |
|||
<!-- WikiPage = --> <td>BraidPlot</td> |
|||
</tr> |
</tr> |
||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>SymmetryType</td> |
<!-- Invariant name --> <td>SymmetryType</td> |
||
<!-- KnotInfoTag = --> <td></td> |
|||
<!-- KnotTheory = --> <td>SymmetryType</td> |
<!-- KnotTheory = --> <td>SymmetryType</td> |
||
<!-- |
<!-- KnotTheorySetter = --> <td></td> |
||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td>SymmetryType</td> |
<!-- ReadWiki = --> <td>SymmetryType</td> |
||
<!-- Type = --> <td>3D Invariant</td> |
<!-- Type = --> <td>3D Invariant</td> |
||
Line 93: | Line 138: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>UnknottingNumber</td> |
<!-- Invariant name --> <td>UnknottingNumber</td> |
||
<!-- KnotInfoTag = --> <td></td> |
|||
<!-- KnotTheory = --> <td>UnknottingNumber</td> |
<!-- KnotTheory = --> <td>UnknottingNumber</td> |
||
<!-- |
<!-- KnotTheorySetter = --> <td></td> |
||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>3D Invariant</td> |
<!-- Type = --> <td>3D Invariant</td> |
||
Line 102: | Line 147: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>ThreeGenus</td> |
<!-- Invariant name --> <td>ThreeGenus</td> |
||
<!-- KnotInfoTag = --> <td></td> |
|||
<!-- KnotTheory = --> <td>ThreeGenus</td> |
<!-- KnotTheory = --> <td>ThreeGenus</td> |
||
<!-- |
<!-- KnotTheorySetter = --> <td></td> |
||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>3D Invariant</td> |
<!-- Type = --> <td>3D Invariant</td> |
||
<!-- WikiPage = --> <td>3-Genus</td> |
<!-- WikiPage = --> <td>3-Genus</td> |
||
</tr> |
|||
<tr> |
|||
<!-- Invariant name --> <td>ConcordanceGenus</td> |
|||
<!-- KnotInfoTag = --> <td></td> |
|||
<!-- KnotTheory = --> <td>ConcordanceGenus</td> |
|||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
|||
<!-- Type = --> <td>3D Invariant</td> |
|||
<!-- WikiPage = --> <td>ConcordanceGenus</td> |
|||
</tr> |
</tr> |
||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>BridgeIndex</td> |
<!-- Invariant name --> <td>BridgeIndex</td> |
||
<!-- KnotInfoTag = --> <td></td> |
|||
<!-- KnotTheory = --> <td>BridgeIndex</td> |
<!-- KnotTheory = --> <td>BridgeIndex</td> |
||
<!-- |
<!-- KnotTheorySetter = --> <td></td> |
||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>3D Invariant</td> |
<!-- Type = --> <td>3D Invariant</td> |
||
Line 120: | Line 174: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>SuperBridgeIndex</td> |
<!-- Invariant name --> <td>SuperBridgeIndex</td> |
||
<!-- KnotInfoTag = --> <td></td> |
|||
<!-- KnotTheory = --> <td>SuperBridgeIndex</td> |
<!-- KnotTheory = --> <td>SuperBridgeIndex</td> |
||
<!-- |
<!-- KnotTheorySetter = --> <td></td> |
||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>3D Invariant</td> |
<!-- Type = --> <td>3D Invariant</td> |
||
Line 129: | Line 183: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>NakanishiIndex</td> |
<!-- Invariant name --> <td>NakanishiIndex</td> |
||
<!-- KnotInfoTag = --> <td></td> |
|||
<!-- KnotTheory = --> <td>NakanishiIndex</td> |
<!-- KnotTheory = --> <td>NakanishiIndex</td> |
||
<!-- |
<!-- KnotTheorySetter = --> <td></td> |
||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>3D Invariant</td> |
<!-- Type = --> <td>3D Invariant</td> |
||
Line 138: | Line 192: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Jones</td> |
<!-- Invariant name --> <td>Jones</td> |
||
<!-- KnotInfoTag = --> <td></td> |
|||
<!-- KnotTheory = --> <td>Jones[#1][q] & </td> |
<!-- KnotTheory = --> <td>Jones[#1][q] & </td> |
||
<!-- |
<!-- KnotTheorySetter = --> <td>Jones[#1] = Function[{q}, #2];&</td> |
||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Polynomial Invariant</td> |
<!-- Type = --> <td>Polynomial Invariant</td> |
||
Line 147: | Line 201: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Alexander</td> |
<!-- Invariant name --> <td>Alexander</td> |
||
<!-- KnotInfoTag = --> <td></td> |
|||
<!-- KnotTheory = --> <td>Alexander[#1][t] & </td> |
<!-- KnotTheory = --> <td>Alexander[#1][t] & </td> |
||
<!-- |
<!-- KnotTheorySetter = --> <td>Alexander[#1] = Function[{t}, #2];&</td> |
||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Polynomial Invariant</td> |
<!-- Type = --> <td>Polynomial Invariant</td> |
||
<!-- WikiPage = --> <td>Alexander_Polynomial</td> |
<!-- WikiPage = --> <td>Alexander_Polynomial</td> |
||
</tr> |
|||
<tr> |
|||
<!-- Invariant name --> <td>Multivariable Alexander</td> |
|||
<!-- KnotInfoTag = --> <td></td> |
|||
<!-- KnotTheory = --> <td>MultivariableAlexander[#1][t] & </td> |
|||
<!-- KnotTheorySetter = --> <td>MultivariableAlexander[#1] = Function[{t}, #2];&</td> |
|||
<!-- ReadWiki = --> <td></td> |
|||
<!-- Type = --> <td>Polynomial Invariant</td> |
|||
<!-- WikiPage = --> <td>Multivariable_Alexander</td> |
|||
</tr> |
</tr> |
||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Determinant</td> |
<!-- Invariant name --> <td>Determinant</td> |
||
<!-- KnotInfoTag = --> <td></td> |
|||
<!-- KnotTheory = --> <td>KnotDet</td> |
<!-- KnotTheory = --> <td>KnotDet</td> |
||
<!-- |
<!-- KnotTheorySetter = --> <td></td> |
||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Polynomial Invariant</td> |
<!-- Type = --> <td>Polynomial Invariant</td> |
||
Line 165: | Line 228: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Signature</td> |
<!-- Invariant name --> <td>Signature</td> |
||
<!-- KnotInfoTag = --> <td></td> |
|||
<!-- KnotTheory = --> <td>KnotSignature</td> |
<!-- KnotTheory = --> <td>KnotSignature</td> |
||
<!-- |
<!-- KnotTheorySetter = --> <td></td> |
||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Polynomial Invariant</td> |
<!-- Type = --> <td>Polynomial Invariant</td> |
||
Line 174: | Line 237: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Conway</td> |
<!-- Invariant name --> <td>Conway</td> |
||
<!-- KnotInfoTag = --> <td></td> |
|||
<!-- KnotTheory = --> <td>Conway[#1][z] & </td> |
<!-- KnotTheory = --> <td>Conway[#1][z] & </td> |
||
<!-- |
<!-- KnotTheorySetter = --> <td>Conway[#1] = Function[{z}, #2];&</td> |
||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Polynomial Invariant</td> |
<!-- Type = --> <td>Polynomial Invariant</td> |
||
Line 183: | Line 246: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>HOMFLYPT</td> |
<!-- Invariant name --> <td>HOMFLYPT</td> |
||
<!-- KnotInfoTag = --> <td></td> |
|||
<!-- KnotTheory = --> <td>HOMFLYPT[#1][a, z] & </td> |
<!-- KnotTheory = --> <td>HOMFLYPT[#1][a, z] & </td> |
||
<!-- |
<!-- KnotTheorySetter = --> <td>HOMFLYPT[#1] = Function[{a, z}, #2];&</td> |
||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Polynomial Invariant</td> |
<!-- Type = --> <td>Polynomial Invariant</td> |
||
Line 192: | Line 255: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Kauffman</td> |
<!-- Invariant name --> <td>Kauffman</td> |
||
<!-- KnotInfoTag = --> <td></td> |
|||
<!-- KnotTheory = --> <td>Kauffman[#1][a, z] & </td> |
<!-- KnotTheory = --> <td>Kauffman[#1][a, z] & </td> |
||
<!-- |
<!-- KnotTheorySetter = --> <td>Kauffman[#1] = Function[{a, z}, #2];&</td> |
||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Polynomial Invariant</td> |
<!-- Type = --> <td>Polynomial Invariant</td> |
||
<!-- WikiPage = --> <td>Kauffman_Polynomial</td> |
<!-- WikiPage = --> <td>Kauffman_Polynomial</td> |
||
</tr> |
|||
<tr> |
|||
<!-- Invariant name --> <td>Khovanov-Rozansky Polynomial</td> |
|||
<!-- KnotInfoTag = --> <td></td> |
|||
<!-- KnotTheory = --> <td></td> |
|||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
|||
<!-- Type = --> <td>Polynomial Invariant</td> |
|||
<!-- WikiPage = --> <td>Khovanov_Rozansky_Polynomial</td> |
|||
</tr> |
</tr> |
||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Vassiliev2</td> |
<!-- Invariant name --> <td>Vassiliev2</td> |
||
<!-- KnotInfoTag = --> <td></td> |
|||
<!-- KnotTheory = --> <td>Vassiliev[2]</td> |
<!-- KnotTheory = --> <td>Vassiliev[2]</td> |
||
<!-- |
<!-- KnotTheorySetter = --> <td></td> |
||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Vassiliev Invariant</td> |
<!-- Type = --> <td>Vassiliev Invariant</td> |
||
Line 210: | Line 282: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Vassiliev3</td> |
<!-- Invariant name --> <td>Vassiliev3</td> |
||
<!-- KnotInfoTag = --> <td></td> |
|||
<!-- KnotTheory = --> <td>Vassiliev[3]</td> |
<!-- KnotTheory = --> <td>Vassiliev[3]</td> |
||
<!-- |
<!-- KnotTheorySetter = --> <td></td> |
||
<!-- ReadLivingston = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>Vassiliev Invariant</td> |
<!-- Type = --> <td>Vassiliev Invariant</td> |
||
Line 219: | Line 291: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Smooth 4-Genus</td> |
<!-- Invariant name --> <td>Smooth 4-Genus</td> |
||
<!-- KnotTheory = --> <td></td> |
|||
<!-- KnotInfoTag = --> <td>smooth_4_genus</td> |
<!-- KnotInfoTag = --> <td>smooth_4_genus</td> |
||
<!-- KnotTheory = --> <td></td> |
|||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>4D Invariant</td> |
<!-- Type = --> <td>4D Invariant</td> |
||
Line 227: | Line 300: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Topological 4-Genus</td> |
<!-- Invariant name --> <td>Topological 4-Genus</td> |
||
<!-- KnotTheory = --> <td></td> |
|||
<!-- KnotInfoTag = --> <td>topological_4_genus</td> |
<!-- KnotInfoTag = --> <td>topological_4_genus</td> |
||
<!-- KnotTheory = --> <td></td> |
|||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>4D Invariant</td> |
<!-- Type = --> <td>4D Invariant</td> |
||
Line 235: | Line 309: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Thurston-Bennequin Number</td> |
<!-- Invariant name --> <td>Thurston-Bennequin Number</td> |
||
<!-- KnotTheory = --> <td></td> |
|||
<!-- KnotInfoTag = --> <td>thurston_bennequin_number</td> |
<!-- KnotInfoTag = --> <td>thurston_bennequin_number</td> |
||
<!-- KnotTheory = --> <td></td> |
|||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>3D Invariant</td> |
<!-- Type = --> <td>3D Invariant</td> |
||
Line 243: | Line 318: | ||
<tr> |
<tr> |
||
<!-- Invariant name --> <td>Hyperbolic Volume</td> |
<!-- Invariant name --> <td>Hyperbolic Volume</td> |
||
<!-- KnotTheory = --> <td></td> |
|||
<!-- KnotInfoTag = --> <td>volume</td> |
<!-- KnotInfoTag = --> <td>volume</td> |
||
<!-- |
<!-- KnotTheory = --> <td>HyperbolicVolume</td> |
||
<!-- KnotTheorySetter = --> <td>HyperbolicVolume[#1]=#2;&</td> |
|||
<!-- ReadWiki = --> <td>HyperbolicVolume</td> |
|||
<!-- Type = --> <td>Hyperbolic Invariant</td> |
<!-- Type = --> <td>Hyperbolic Invariant</td> |
||
<!-- WikiPage = --> <td>HyperbolicVolume</td> |
<!-- WikiPage = --> <td>HyperbolicVolume</td> |
||
</tr> |
|||
<tr> |
|||
<!-- Invariant name --> <td>Conway Notation</td> |
|||
<!-- KnotInfoTag = --> <td>conway_notation</td> |
|||
<!-- KnotTheory = --> <td></td> |
|||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
|||
<!-- Type = --> <td>Knot Presentation</td> |
|||
<!-- WikiPage = --> <td>Conway Notation</td> |
|||
</tr> |
|||
<tr> |
|||
<!-- Invariant name --> <td>Concordance Order</td> |
|||
<!-- KnotInfoTag = --> <td>concordance_order</td> |
|||
<!-- KnotTheory = --> <td></td> |
|||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
|||
<!-- Type = --> <td>Concordance Invariant</td> |
|||
<!-- WikiPage = --> <td>ConcordanceOrder</td> |
|||
</tr> |
|||
<tr> |
|||
<!-- Invariant name --> <td>Algebraic Concordance Order</td> |
|||
<!-- KnotInfoTag = --> <td>concordance_order_algebraic</td> |
|||
<!-- KnotTheory = --> <td></td> |
|||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
|||
<!-- Type = --> <td>Concordance Invariant</td> |
|||
<!-- WikiPage = --> <td>AlgebraicConcordanceOrder</td> |
|||
</tr> |
|||
<tr> |
|||
<!-- Invariant name --> <td>Ozsvath-Szabo Tau Invariant</td> |
|||
<!-- KnotInfoTag = --> <td>ozsvath_szabo_tau</td> |
|||
<!-- KnotTheory = --> <td></td> |
|||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
|||
<!-- Type = --> <td>4D Invariant</td> |
|||
<!-- WikiPage = --> <td>TauInvariant</td> |
|||
</tr> |
|||
<tr> |
|||
<!-- Invariant name --> <td>Khovanov s-Invariant</td> |
|||
<!-- KnotInfoTag = --> <td>khovanov_s_invariant</td> |
|||
<!-- KnotTheory = --> <td></td> |
|||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
|||
<!-- Type = --> <td>4D Invariant</td> |
|||
<!-- WikiPage = --> <td>s-Invariant</td> |
|||
</tr> |
|||
<tr> |
|||
<!-- Invariant name --> <td>Rational Khovanov Polynomial</td> |
|||
<!-- KnotInfoTag = --> <td></td> |
|||
<!-- KnotTheory = --> <td>Kh[#1][q, t] & </td> |
|||
<!-- KnotTheorySetter = --> <td>Kh[#1] = Function[{q, t}, #2];&</td> |
|||
<!-- ReadWiki = --> <td></td> |
|||
<!-- Type = --> <td>Polynomial Invariant</td> |
|||
<!-- WikiPage = --> <td>Rational_Khovanov_Polynomial</td> |
|||
</tr> |
|||
<tr> |
|||
<!-- Invariant name --> <td>Khovanov Polynomial Table</td> |
|||
<!-- KnotInfoTag = --> <td></td> |
|||
<!-- KnotTheory = --> <td>TabularKh[Kh[#][q, t], KnotSignature[#]+{1,-1}]&</td> |
|||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
|||
<!-- Type = --> <td>Polynomial Invariant</td> |
|||
<!-- WikiPage = --> <td>KhovanovTable</td> |
|||
</tr> |
|||
<tr> |
|||
<!-- Invariant name --> <td>A-polynomial</td> |
|||
<!-- KnotInfoTag = --> <td></td> |
|||
<!-- KnotTheory = --> <td></td> |
|||
<!-- KnotTheorySetter = --> <td></td> |
|||
<!-- ReadWiki = --> <td></td> |
|||
<!-- Type = --> <td></td> |
|||
<!-- WikiPage = --> <td>A-polynomial</td> |
|||
</tr> |
</tr> |
||
</table> |
</table> |
Latest revision as of 15:09, 24 June 2006
Invariant name | KnotInfoTag | KnotTheory | KnotTheorySetter | ReadWiki | Type | WikiPage |
---|---|---|---|---|---|---|
Crossings | Crossings | Link Presentation | Crossings | |||
Knot Number | KnotNumber | Link Presentation | Number | |||
Knotilus URL | "["<>KnotilusURL[#]<>" "<>NameString[#]<>"'s page]"& | Navigation | KnotilusURL | |||
Next Knot | NextKnot | Knot | Navigation | Next_Knot | ||
Previous Knot | PreviousKnot | Knot | Navigation | Previous_Knot | ||
Gauss Code | GaussCode | GaussCode | Link Presentation | Gauss_Code | ||
Planar Diagram | PD | PD | Link Presentation | PD_Presentation | ||
Dowker-Thistlethwaite Code | DTCode | DTCode | Knot Presentation | DT_Code | ||
Braid Word | BR[#]& | Knot Presentation | BraidWord | |||
Minimal Braid Length | Crossings[BR[#]]& | Knot Presentation | MinimalBraidLength | |||
Minimal Braid Width | First[BR[#]]& | Knot Presentation | MinimalBraidWidth | |||
Braid Index | BraidIndex | Knot Presentation | BraidIndex | |||
Braid Plot | BraidPlot[CollapseBraid[BR[#]], Mode -> "Wiki", Images -> {"BraidPart0.gif", "BraidPart1.gif", "BraidPart2.gif", "BraidPart3.gif", "BraidPart4.gif"}]& | Knot Presentation | BraidPlot | |||
SymmetryType | SymmetryType | SymmetryType | 3D Invariant | Symmetry_Type | ||
UnknottingNumber | UnknottingNumber | 3D Invariant | Unknotting_Number | |||
ThreeGenus | ThreeGenus | 3D Invariant | 3-Genus | |||
ConcordanceGenus | ConcordanceGenus | 3D Invariant | ConcordanceGenus | |||
BridgeIndex | BridgeIndex | 3D Invariant | Bridge_Index | |||
SuperBridgeIndex | SuperBridgeIndex | 3D Invariant | Super_Bridge_Index | |||
NakanishiIndex | NakanishiIndex | 3D Invariant | Nakanishi_Index | |||
Jones | Jones[#1][q] & | Jones[#1] = Function[{q}, #2];& | Polynomial Invariant | Jones_Polynomial | ||
Alexander | Alexander[#1][t] & | Alexander[#1] = Function[{t}, #2];& | Polynomial Invariant | Alexander_Polynomial | ||
Multivariable Alexander | MultivariableAlexander[#1][t] & | MultivariableAlexander[#1] = Function[{t}, #2];& | Polynomial Invariant | Multivariable_Alexander | ||
Determinant | KnotDet | Polynomial Invariant | Determinant | |||
Signature | KnotSignature | Polynomial Invariant | Signature | |||
Conway | Conway[#1][z] & | Conway[#1] = Function[{z}, #2];& | Polynomial Invariant | Conway_Polynomial | ||
HOMFLYPT | HOMFLYPT[#1][a, z] & | HOMFLYPT[#1] = Function[{a, z}, #2];& | Polynomial Invariant | HOMFLYPT_Polynomial | ||
Kauffman | Kauffman[#1][a, z] & | Kauffman[#1] = Function[{a, z}, #2];& | Polynomial Invariant | Kauffman_Polynomial | ||
Khovanov-Rozansky Polynomial | Polynomial Invariant | Khovanov_Rozansky_Polynomial | ||||
Vassiliev2 | Vassiliev[2] | Vassiliev Invariant | V_2 | |||
Vassiliev3 | Vassiliev[3] | Vassiliev Invariant | V_3 | |||
Smooth 4-Genus | smooth_4_genus | 4D Invariant | Smooth4Genus | |||
Topological 4-Genus | topological_4_genus | 4D Invariant | Topological4Genus | |||
Thurston-Bennequin Number | thurston_bennequin_number | 3D Invariant | ThurstonBennequinNumber | |||
Hyperbolic Volume | volume | HyperbolicVolume | HyperbolicVolume[#1]=#2;& | HyperbolicVolume | Hyperbolic Invariant | HyperbolicVolume |
Conway Notation | conway_notation | Knot Presentation | Conway Notation | |||
Concordance Order | concordance_order | Concordance Invariant | ConcordanceOrder | |||
Algebraic Concordance Order | concordance_order_algebraic | Concordance Invariant | AlgebraicConcordanceOrder | |||
Ozsvath-Szabo Tau Invariant | ozsvath_szabo_tau | 4D Invariant | TauInvariant | |||
Khovanov s-Invariant | khovanov_s_invariant | 4D Invariant | s-Invariant | |||
Rational Khovanov Polynomial | Kh[#1][q, t] & | Kh[#1] = Function[{q, t}, #2];& | Polynomial Invariant | Rational_Khovanov_Polynomial | ||
Khovanov Polynomial Table | TabularKh[Kh[#][q, t], KnotSignature[#]+{1,-1}]& | Polynomial Invariant | KhovanovTable | |||
A-polynomial | A-polynomial |