Invariant Definition Table: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(17 intermediate revisions by 3 users not shown)
Line 5: Line 5:
<th>KnotInfoTag</th>
<th>KnotInfoTag</th>
<th>KnotTheory</th>
<th>KnotTheory</th>
<th>KnotTheorySetter</th>
<th>ReadWiki</th>
<th>ReadWiki</th>
<th>Type</th>
<th>Type</th>
Line 13: Line 14:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>Crossings</td>
<!-- KnotTheory = --> <td>Crossings</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Link Presentation</td>
<!-- Type = --> <td>Link Presentation</td>
Line 21: Line 23:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>KnotNumber</td>
<!-- KnotTheory = --> <td>KnotNumber</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Link Presentation</td>
<!-- Type = --> <td>Link Presentation</td>
Line 28: Line 31:
<!-- Invariant name --> <td>Knotilus URL</td>
<!-- Invariant name --> <td>Knotilus URL</td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>KnotilusURL</td>
<!-- KnotTheory = --> <td>"["<>KnotilusURL[#]<>" "<>NameString[#]<>"'s page]"&</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Navigation</td>
<!-- Type = --> <td>Navigation</td>
Line 37: Line 41:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>NextKnot</td>
<!-- KnotTheory = --> <td>NextKnot</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td>Knot</td>
<!-- ReadWiki = --> <td>Knot</td>
<!-- Type = --> <td>Navigation</td>
<!-- Type = --> <td>Navigation</td>
Line 45: Line 50:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>PreviousKnot</td>
<!-- KnotTheory = --> <td>PreviousKnot</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td>Knot</td>
<!-- ReadWiki = --> <td>Knot</td>
<!-- Type = --> <td>Navigation</td>
<!-- Type = --> <td>Navigation</td>
Line 53: Line 59:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>GaussCode</td>
<!-- KnotTheory = --> <td>GaussCode</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td>GaussCode</td>
<!-- ReadWiki = --> <td>GaussCode</td>
<!-- Type = --> <td>Link Presentation</td>
<!-- Type = --> <td>Link Presentation</td>
Line 61: Line 68:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>PD</td>
<!-- KnotTheory = --> <td>PD</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td>PD</td>
<!-- ReadWiki = --> <td>PD</td>
<!-- Type = --> <td>Link Presentation</td>
<!-- Type = --> <td>Link Presentation</td>
Line 69: Line 77:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>DTCode</td>
<!-- KnotTheory = --> <td>DTCode</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td>DTCode</td>
<!-- ReadWiki = --> <td>DTCode</td>
<!-- Type = --> <td>Knot Presentation</td>
<!-- Type = --> <td>Knot Presentation</td>
<!-- WikiPage = --> <td>DT_Code</td>
<!-- WikiPage = --> <td>DT_Code</td>
</tr>
<tr>
<!-- Invariant name --> <td>Braid Word</td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>BR[#]&</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Knot Presentation</td>
<!-- WikiPage = --> <td>BraidWord</td>
</tr>
<tr>
<!-- Invariant name --> <td>Minimal Braid Length</td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>Crossings[BR[#]]&</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Knot Presentation</td>
<!-- WikiPage = --> <td>MinimalBraidLength</td>
</tr>
<tr>
<!-- Invariant name --> <td>Minimal Braid Width</td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>First[BR[#]]&</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Knot Presentation</td>
<!-- WikiPage = --> <td>MinimalBraidWidth</td>
</tr>
<tr>
<!-- Invariant name --> <td>Braid Index</td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>BraidIndex</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Knot Presentation</td>
<!-- WikiPage = --> <td>BraidIndex</td>
</tr>
<tr>
<!-- Invariant name --> <td>Braid Plot</td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>BraidPlot[CollapseBraid[BR[#]], Mode -> "Wiki", Images -> {"BraidPart0.gif", "BraidPart1.gif", "BraidPart2.gif", "BraidPart3.gif", "BraidPart4.gif"}]&</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Knot Presentation</td>
<!-- WikiPage = --> <td>BraidPlot</td>
</tr>
</tr>
<tr>
<tr>
Line 77: Line 131:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>SymmetryType</td>
<!-- KnotTheory = --> <td>SymmetryType</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td>SymmetryType</td>
<!-- ReadWiki = --> <td>SymmetryType</td>
<!-- Type = --> <td>3D Invariant</td>
<!-- Type = --> <td>3D Invariant</td>
Line 85: Line 140:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>UnknottingNumber</td>
<!-- KnotTheory = --> <td>UnknottingNumber</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>3D Invariant</td>
<!-- Type = --> <td>3D Invariant</td>
Line 93: Line 149:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>ThreeGenus</td>
<!-- KnotTheory = --> <td>ThreeGenus</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>3D Invariant</td>
<!-- Type = --> <td>3D Invariant</td>
<!-- WikiPage = --> <td>3-Genus</td>
<!-- WikiPage = --> <td>3-Genus</td>
</tr>
<tr>
<!-- Invariant name --> <td>ConcordanceGenus</td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>ConcordanceGenus</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>3D Invariant</td>
<!-- WikiPage = --> <td>ConcordanceGenus</td>
</tr>
</tr>
<tr>
<tr>
Line 101: Line 167:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>BridgeIndex</td>
<!-- KnotTheory = --> <td>BridgeIndex</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>3D Invariant</td>
<!-- Type = --> <td>3D Invariant</td>
Line 109: Line 176:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>SuperBridgeIndex</td>
<!-- KnotTheory = --> <td>SuperBridgeIndex</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>3D Invariant</td>
<!-- Type = --> <td>3D Invariant</td>
Line 117: Line 185:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>NakanishiIndex</td>
<!-- KnotTheory = --> <td>NakanishiIndex</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>3D Invariant</td>
<!-- Type = --> <td>3D Invariant</td>
Line 125: Line 194:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>Jones[#1][q] & </td>
<!-- KnotTheory = --> <td>Jones[#1][q] & </td>
<!-- KnotTheorySetter = --> <td>Jones[#1] = Function[{q}, #2];&</td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Polynomial Invariant</td>
<!-- Type = --> <td>Polynomial Invariant</td>
Line 133: Line 203:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>Alexander[#1][t] & </td>
<!-- KnotTheory = --> <td>Alexander[#1][t] & </td>
<!-- KnotTheorySetter = --> <td>Alexander[#1] = Function[{t}, #2];&</td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Polynomial Invariant</td>
<!-- Type = --> <td>Polynomial Invariant</td>
<!-- WikiPage = --> <td>Alexander_Polynomial</td>
<!-- WikiPage = --> <td>Alexander_Polynomial</td>
</tr>
<tr>
<!-- Invariant name --> <td>Multivariable Alexander</td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>MultivariableAlexander[#1][t] & </td>
<!-- KnotTheorySetter = --> <td>MultivariableAlexander[#1] = Function[{t}, #2];&</td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Polynomial Invariant</td>
<!-- WikiPage = --> <td>Multivariable_Alexander</td>
</tr>
</tr>
<tr>
<tr>
Line 141: Line 221:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>KnotDet</td>
<!-- KnotTheory = --> <td>KnotDet</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Polynomial Invariant</td>
<!-- Type = --> <td>Polynomial Invariant</td>
Line 149: Line 230:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>KnotSignature</td>
<!-- KnotTheory = --> <td>KnotSignature</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Polynomial Invariant</td>
<!-- Type = --> <td>Polynomial Invariant</td>
Line 157: Line 239:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>Conway[#1][z] & </td>
<!-- KnotTheory = --> <td>Conway[#1][z] & </td>
<!-- KnotTheorySetter = --> <td>Conway[#1] = Function[{z}, #2];&</td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Polynomial Invariant</td>
<!-- Type = --> <td>Polynomial Invariant</td>
Line 165: Line 248:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>HOMFLYPT[#1][a, z] & </td>
<!-- KnotTheory = --> <td>HOMFLYPT[#1][a, z] & </td>
<!-- KnotTheorySetter = --> <td>HOMFLYPT[#1] = Function[{a, z}, #2];&</td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Polynomial Invariant</td>
<!-- Type = --> <td>Polynomial Invariant</td>
Line 173: Line 257:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>Kauffman[#1][a, z] & </td>
<!-- KnotTheory = --> <td>Kauffman[#1][a, z] & </td>
<!-- KnotTheorySetter = --> <td>Kauffman[#1] = Function[{a, z}, #2];&</td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Polynomial Invariant</td>
<!-- Type = --> <td>Polynomial Invariant</td>
Line 181: Line 266:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Polynomial Invariant</td>
<!-- Type = --> <td>Polynomial Invariant</td>
Line 189: Line 275:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>Vassiliev[2]</td>
<!-- KnotTheory = --> <td>Vassiliev[2]</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Vassiliev Invariant</td>
<!-- Type = --> <td>Vassiliev Invariant</td>
Line 197: Line 284:
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>Vassiliev[3]</td>
<!-- KnotTheory = --> <td>Vassiliev[3]</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Vassiliev Invariant</td>
<!-- Type = --> <td>Vassiliev Invariant</td>
Line 205: Line 293:
<!-- KnotInfoTag = --> <td>smooth_4_genus</td>
<!-- KnotInfoTag = --> <td>smooth_4_genus</td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>4D Invariant</td>
<!-- Type = --> <td>4D Invariant</td>
Line 213: Line 302:
<!-- KnotInfoTag = --> <td>topological_4_genus</td>
<!-- KnotInfoTag = --> <td>topological_4_genus</td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>4D Invariant</td>
<!-- Type = --> <td>4D Invariant</td>
Line 221: Line 311:
<!-- KnotInfoTag = --> <td>thurston_bennequin_number</td>
<!-- KnotInfoTag = --> <td>thurston_bennequin_number</td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>3D Invariant</td>
<!-- Type = --> <td>3D Invariant</td>
Line 228: Line 319:
<!-- Invariant name --> <td>Hyperbolic Volume</td>
<!-- Invariant name --> <td>Hyperbolic Volume</td>
<!-- KnotInfoTag = --> <td>volume</td>
<!-- KnotInfoTag = --> <td>volume</td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheory = --> <td>HyperbolicVolume</td>
<!-- ReadWiki = --> <td></td>
<!-- KnotTheorySetter = --> <td>HyperbolicVolume[#1]=#2;&</td>
<!-- ReadWiki = --> <td>HyperbolicVolume</td>
<!-- Type = --> <td>Hyperbolic Invariant</td>
<!-- Type = --> <td>Hyperbolic Invariant</td>
<!-- WikiPage = --> <td>HyperbolicVolume</td>
<!-- WikiPage = --> <td>HyperbolicVolume</td>
Line 237: Line 329:
<!-- KnotInfoTag = --> <td>conway_notation</td>
<!-- KnotInfoTag = --> <td>conway_notation</td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Knot Presentation</td>
<!-- Type = --> <td>Knot Presentation</td>
<!-- WikiPage = --> <td>ConwayNotation</td>
<!-- WikiPage = --> <td>Conway Notation</td>
</tr>
</tr>
<tr>
<tr>
Line 245: Line 338:
<!-- KnotInfoTag = --> <td>concordance_order</td>
<!-- KnotInfoTag = --> <td>concordance_order</td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Concordance Invariant</td>
<!-- Type = --> <td>Concordance Invariant</td>
Line 253: Line 347:
<!-- KnotInfoTag = --> <td>concordance_order_algebraic</td>
<!-- KnotInfoTag = --> <td>concordance_order_algebraic</td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Concordance Invariant</td>
<!-- Type = --> <td>Concordance Invariant</td>
Line 261: Line 356:
<!-- KnotInfoTag = --> <td>ozsvath_szabo_tau</td>
<!-- KnotInfoTag = --> <td>ozsvath_szabo_tau</td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>4D Invariant</td>
<!-- Type = --> <td>4D Invariant</td>
Line 266: Line 362:
</tr>
</tr>
<tr>
<tr>
<!-- Invariant name --> <td>Rational Khovanov Homology</td>
<!-- Invariant name --> <td>Khovanov s-Invariant</td>
<!-- KnotInfoTag = --> <td>khovanov_s_invariant</td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>4D Invariant</td>
<!-- WikiPage = --> <td>s-Invariant</td>
</tr>
<tr>
<!-- Invariant name --> <td>Rational Khovanov Polynomial</td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>Kh[#1][q, t] & </td>
<!-- KnotTheory = --> <td>Kh[#1][q, t] & </td>
<!-- KnotTheorySetter = --> <td>Kh[#1] = Function[{q, t}, #2];&</td>
<!-- ReadWiki = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Polynomial Invariant</td>
<!-- Type = --> <td>Polynomial Invariant</td>
<!-- WikiPage = --> <td>Rational_Khovanov_Polynomial</td>
<!-- WikiPage = --> <td>Rational_Khovanov_Polynomial</td>
</tr>
<tr>
<!-- Invariant name --> <td>Khovanov Polynomial Table</td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td>TabularKh[Kh[#][q, t], KnotSignature[#]+{1,-1}]&</td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td>Polynomial Invariant</td>
<!-- WikiPage = --> <td>KhovanovTable</td>
</tr>
<tr>
<!-- Invariant name --> <td>A-polynomial</td>
<!-- KnotInfoTag = --> <td></td>
<!-- KnotTheory = --> <td></td>
<!-- KnotTheorySetter = --> <td></td>
<!-- ReadWiki = --> <td></td>
<!-- Type = --> <td></td>
<!-- WikiPage = --> <td>A-polynomial</td>
</tr>
</tr>
</table>
</table>

Latest revision as of 15:09, 24 June 2006

Stop hand.png This page is for experts only!
This page stores the definitions of knot invariants understood by ManagingKnotData.m. Please don't edit it without understanding how that program works, and having read Expert Mode Editing.
Invariant name KnotInfoTag KnotTheory KnotTheorySetter ReadWiki Type WikiPage
Crossings Crossings Link Presentation Crossings
Knot Number KnotNumber Link Presentation Number
Knotilus URL "["<>KnotilusURL[#]<>" "<>NameString[#]<>"'s page]"& Navigation KnotilusURL
Next Knot NextKnot Knot Navigation Next_Knot
Previous Knot PreviousKnot Knot Navigation Previous_Knot
Gauss Code GaussCode GaussCode Link Presentation Gauss_Code
Planar Diagram PD PD Link Presentation PD_Presentation
Dowker-Thistlethwaite Code DTCode DTCode Knot Presentation DT_Code
Braid Word BR[#]& Knot Presentation BraidWord
Minimal Braid Length Crossings[BR[#]]& Knot Presentation MinimalBraidLength
Minimal Braid Width First[BR[#]]& Knot Presentation MinimalBraidWidth
Braid Index BraidIndex Knot Presentation BraidIndex
Braid Plot BraidPlot[CollapseBraid[BR[#]], Mode -> "Wiki", Images -> {"BraidPart0.gif", "BraidPart1.gif", "BraidPart2.gif", "BraidPart3.gif", "BraidPart4.gif"}]& Knot Presentation BraidPlot
SymmetryType SymmetryType SymmetryType 3D Invariant Symmetry_Type
UnknottingNumber UnknottingNumber 3D Invariant Unknotting_Number
ThreeGenus ThreeGenus 3D Invariant 3-Genus
ConcordanceGenus ConcordanceGenus 3D Invariant ConcordanceGenus
BridgeIndex BridgeIndex 3D Invariant Bridge_Index
SuperBridgeIndex SuperBridgeIndex 3D Invariant Super_Bridge_Index
NakanishiIndex NakanishiIndex 3D Invariant Nakanishi_Index
Jones Jones[#1][q] & Jones[#1] = Function[{q}, #2];& Polynomial Invariant Jones_Polynomial
Alexander Alexander[#1][t] & Alexander[#1] = Function[{t}, #2];& Polynomial Invariant Alexander_Polynomial
Multivariable Alexander MultivariableAlexander[#1][t] & MultivariableAlexander[#1] = Function[{t}, #2];& Polynomial Invariant Multivariable_Alexander
Determinant KnotDet Polynomial Invariant Determinant
Signature KnotSignature Polynomial Invariant Signature
Conway Conway[#1][z] & Conway[#1] = Function[{z}, #2];& Polynomial Invariant Conway_Polynomial
HOMFLYPT HOMFLYPT[#1][a, z] & HOMFLYPT[#1] = Function[{a, z}, #2];& Polynomial Invariant HOMFLYPT_Polynomial
Kauffman Kauffman[#1][a, z] & Kauffman[#1] = Function[{a, z}, #2];& Polynomial Invariant Kauffman_Polynomial
Khovanov-Rozansky Polynomial Polynomial Invariant Khovanov_Rozansky_Polynomial
Vassiliev2 Vassiliev[2] Vassiliev Invariant V_2
Vassiliev3 Vassiliev[3] Vassiliev Invariant V_3
Smooth 4-Genus smooth_4_genus 4D Invariant Smooth4Genus
Topological 4-Genus topological_4_genus 4D Invariant Topological4Genus
Thurston-Bennequin Number thurston_bennequin_number 3D Invariant ThurstonBennequinNumber
Hyperbolic Volume volume HyperbolicVolume HyperbolicVolume[#1]=#2;& HyperbolicVolume Hyperbolic Invariant HyperbolicVolume
Conway Notation conway_notation Knot Presentation Conway Notation
Concordance Order concordance_order Concordance Invariant ConcordanceOrder
Algebraic Concordance Order concordance_order_algebraic Concordance Invariant AlgebraicConcordanceOrder
Ozsvath-Szabo Tau Invariant ozsvath_szabo_tau 4D Invariant TauInvariant
Khovanov s-Invariant khovanov_s_invariant 4D Invariant s-Invariant
Rational Khovanov Polynomial Kh[#1][q, t] & Kh[#1] = Function[{q, t}, #2];& Polynomial Invariant Rational_Khovanov_Polynomial
Khovanov Polynomial Table TabularKh[Kh[#][q, t], KnotSignature[#]+{1,-1}]& Polynomial Invariant KhovanovTable
A-polynomial A-polynomial