The Jones Polynomial: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 3: Line 3:
<!--$$ Jones[Knot[6, 3]][q] $$-->
<!--$$ Jones[Knot[6, 3]][q] $$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
<tt>In[1]:=</tt> <code> Jones[Knot[6, 2]][q] </code>
<tt>In[1]:=</tt> <code> Jones[Knot[6, 3]][q] </code>


<tt>Out[1]=</tt> <math>q-1+\frac{2}{q}-\frac{2}{q^2}+\frac{2}{q^3}-\frac{2}{q^4}+\frac{1}{q^5}</math>
<tt>Out[1]=</tt> <math>-q^3+2 q^2-2 q+3-\frac{2}{q}+\frac{2}{q^2}-\frac{1}{q^3}</math>
<!--END-->
<!--END-->


<!--$$ Jones[Knot[9, 48]][q] $$-->
<!--$$ Jones[Knot[9, 48]][q] $$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
<tt>In[2]:=</tt> <code> Jones[Knot[9, 46]][q] </code>
<tt>In[2]:=</tt> <code> Jones[Knot[9, 48]][q] </code>


<tt>Out[2]=</tt> <math>2-\frac{1}{q}+\frac{1}{q^2}-\frac{2}{q^3}+\frac{1}{q^4}-\frac{1}{q^5}+\frac{1}{q^6}</math>
<tt>Out[2]=</tt> <math>-2 q^6+3 q^5-4 q^4+6 q^3-4 q^2+4 q-3+\frac{1}{q}</math>
<!--END-->
<!--END-->


<!--$$ Jones[Knot[10, 112]][q] $$-->
<!--$$ Jones[Knot[10, 112]][q] $$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
<tt>In[3]:=</tt> <code> Jones[Knot[10, 112]][q] </code>

<tt>Out[3]=</tt> <math>q^3-4 q^2+7 q-10+\frac{14}{q}-\frac{14}{q^2}+\frac{14}{q^3}-\frac{11}{q^4}+\frac{7}{q^5}-\frac{4}{q^6}+\frac{1}{q^7}</math>
<!--END-->
<!--END-->

Revision as of 18:12, 22 August 2005

The knots 6_1 and 9_46 have the same Alexander polynomial. Their Jones polynomials are different, though:

In[1]:= Jones[Knot[6, 3]][q]

Out[1]=

In[2]:= Jones[Knot[9, 48]][q]

Out[2]=

In[3]:= Jones[Knot[10, 112]][q]

Out[3]=