Article:Math.QA/9907166/unidentified-references: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
 
No edit summary
 
Line 1: Line 1:
<pre>
<pre>

R.~Borcherds, {Vertex algebras, Kac-Moody algebras, and the Monster}, Proc. Natl. Acad. Sci. USA {\bf 83} (1986) 3068--3071.

I.~B. Frenkel, {\em Two constructions of affine algebras and boson-fermion correspondence}, J. Funct. Anal. {\bf 44} (1981) 259--327.

I.~B. Frenkel, {\em Kac-Moody algebras and dual resonance models}, in {\em Applications of Group Theory in Physics and Mathematical Physics}, eds. M. Flato et al, Lect. in Appl. Math. {\bf 21}, 325--353. AMS, Providence, 1985.

I.~B. Frenkel, {\em Lectures on infinite dimensional Lie algebras}, Yale Univ, 1986.

I.~B. Frenkel and V.~G. Kac, {\em Basic representations of affine Lie algebras and dual resonance models}, Invent. Math. {\bf 62} (1980) 23--66.

I.~B.~Frenkel, J.~Lepowsky and A.~Meurman, {\em Vertex operator algebras and the Monster}, Academic Press, New York, 1988.

I.~Grojnowski, {\em Instantons and affine algebras I: the Hilbert scheme and vertex operators}, Math. Res. Lett. {\bf 3} (1996) 275--291.

N.~Jing, {\em Vertex operators, symmetric functions and the spin group $\Gamma_n$}, J. Alg. {\bf 138} (1991) 340--398.

N.~Jing, {\em Vertex operators and Hall-Littlewood symmetric functions}, Adv. in Math. {\bf 87} (1991) 226--248.

N.~Jing, {\em Boson-fermion correspondence for Hall-Littlewood polynomials}, J. Math. Phys. {\bf 36} (1995) 7073--7080.

I.~G. Macdonald, {\em Polynomial functors and wreath products}, J. Pure Appl. Alg. {\bf 18} (1980) 173--204.

I.~G. Macdonald, {\em Symmetric functions and Hall polynomials}, 2nd ed., Clarendon Press, Oxford, 1995.

J.~McKay, {\em Graphs, singularities and finite groups}, Proc. Sympos. Pure Math. {\bf 37}, Amer. Math. Soc, Providence, RI (1980) 183--186.

R.~Moody, S.~Rao and T.~Yokonuma, {\em Toroidal Lie algebras and vertex representations}, Geom. Dedica. {\bf 35} (1990) 283--307.

H. Nakajima, {\em Lectures on Hilbert schemes of points on surfaces}, 1996.

G.~Segal, {\em Unitary representations of some infinite dimensional groups}, Commun. Math. Phys. {\bf 80} (1981) 301--342.

G.~Segal, {\em Equivariant K-theory and symmetric products}, 1996 preprint (unpublished).

R.~Steinberg, {\em Finite subgroups of $SU_2$, Dynkin diagrams and affine Coxeter elements}, Pacif. J. Math. {\bf 118} (1985) 587--598.


A.~Zelevinsky, {\em Representations of finite classical groups, A Hopf algebra approach}. Lecture Notes in Mathematics, {\bf 869}. Springer-Verlag, Berlin-New York, 1981.

</pre>
</pre>

Latest revision as of 04:17, 17 September 2006

  

 R.~Borcherds, {Vertex algebras, Kac-Moody algebras, and the Monster}, Proc. Natl. Acad. Sci. USA {\bf 83} (1986) 3068--3071.  

 I.~B. Frenkel, {\em Two constructions of affine algebras and boson-fermion correspondence}, J. Funct. Anal. {\bf 44} (1981) 259--327.  

 I.~B. Frenkel, {\em Kac-Moody algebras and dual resonance models}, in {\em Applications of Group Theory in Physics and Mathematical Physics}, eds. M. Flato et al, Lect. in Appl. Math. {\bf 21}, 325--353. AMS, Providence, 1985.  

 I.~B. Frenkel, {\em Lectures on infinite dimensional Lie algebras}, Yale Univ, 1986.  

 I.~B. Frenkel and V.~G. Kac, {\em Basic representations of affine Lie algebras and dual resonance models}, Invent. Math. {\bf 62} (1980) 23--66.  

 I.~B.~Frenkel, J.~Lepowsky and A.~Meurman, {\em Vertex operator algebras and the Monster}, Academic Press, New York, 1988.  

 I.~Grojnowski, {\em Instantons and affine algebras I: the Hilbert scheme and vertex operators}, Math. Res. Lett. {\bf 3} (1996) 275--291.  

 N.~Jing, {\em Vertex operators, symmetric functions and the spin group $\Gamma_n$}, J. Alg. {\bf 138} (1991) 340--398.  

 N.~Jing, {\em Vertex operators and Hall-Littlewood symmetric functions}, Adv. in Math. {\bf 87} (1991) 226--248.  

 N.~Jing, {\em Boson-fermion correspondence for Hall-Littlewood polynomials}, J. Math. Phys. {\bf 36} (1995) 7073--7080.  

 I.~G. Macdonald, {\em Polynomial functors and wreath products}, J. Pure Appl. Alg. {\bf 18} (1980) 173--204.  

 I.~G. Macdonald, {\em Symmetric functions and Hall polynomials}, 2nd ed., Clarendon Press, Oxford, 1995.  

 J.~McKay, {\em Graphs, singularities and finite groups}, Proc. Sympos. Pure Math. {\bf 37}, Amer. Math. Soc, Providence, RI (1980) 183--186.  

 R.~Moody, S.~Rao and T.~Yokonuma, {\em Toroidal Lie algebras and vertex representations}, Geom. Dedica. {\bf 35} (1990) 283--307.  

 H. Nakajima, {\em Lectures on Hilbert schemes of points on surfaces}, 1996.  

 G.~Segal, {\em Unitary representations of some infinite dimensional groups}, Commun. Math. Phys. {\bf 80} (1981) 301--342.  

 G.~Segal, {\em Equivariant K-theory and symmetric products}, 1996 preprint (unpublished).  

 R.~Steinberg, {\em Finite subgroups of $SU_2$, Dynkin diagrams and affine Coxeter elements}, Pacif. J. Math. {\bf 118} (1985) 587--598.  


 A.~Zelevinsky, {\em Representations of finite classical groups, A Hopf algebra approach}. Lecture Notes in Mathematics, {\bf 869}. Springer-Verlag, Berlin-New York, 1981.