The Take Home Database: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
Line 21: Line 21:
The Jones polynomial of [[10_71]]:
The Jones polynomial of [[10_71]]:
<pre>
<pre>
[drorbn@katlas ~/TakeHomeDatabase]$ zgrep 10_71 Rolfsen.rdf.gz | grep Jones_Polynomial
[drorbn@katlas ~/Data]$ zgrep 10_71 Rolfsen.rdf.gz | grep Jones_Polynomial
<knot:10_71> <invariant:Jones_Polynomial> "<math>-q^5+3 q^4-6 q^3+10 q^2-12 q+13-12 q^{-1} +10 q^{-2} -6 q^{-3} +3 q^{-4} - q^{-5} </math>" .
<knot:10_71> <invariant:Jones_Polynomial> "<math>-q^5+3 q^4-6 q^3+10 q^2-12 q+13-12 q^{-1} +10 q^{-2} -6 q^{-3} +3 q^{-4} - q^{-5} </math>" .
</pre>
</pre>
Line 27: Line 27:
The first few invariants (lexicographically) of [[10_71]]:
The first few invariants (lexicographically) of [[10_71]]:
<pre>
<pre>
[drorbn@katlas ~/TakeHomeDatabase]$ zgrep knot:10_71 Rolfsen.rdf.gz | head
[drorbn@katlas ~/Data]$ zgrep knot:10_71 Rolfsen.rdf.gz | head
<knot:10_71> <invariant:2nd_AlexanderIdeal> "<math>\\{1\\}</math>" .
<knot:10_71> <invariant:2nd_AlexanderIdeal> "<math>\\{1\\}</math>" .
<knot:10_71> <invariant:3-Genus> "3" .
<knot:10_71> <invariant:3-Genus> "3" .
Line 42: Line 42:
The [[The Alexander-Conway Polynomial|Alexander Polynomials]] of the last few knots in the Rolfsen table:
The [[The Alexander-Conway Polynomial|Alexander Polynomials]] of the last few knots in the Rolfsen table:
<pre>
<pre>
[drorbn@katlas ~/TakeHomeDatabase]$ zgrep Alexander_Polynomial Rolfsen.rdf.gz | tail
[drorbn@katlas ~/Data]$ zgrep Alexander_Polynomial Rolfsen.rdf.gz | tail
<knot:10_156> <invariant:Alexander_Polynomial> "<math>t^3-4 t^2+8 t-9+8 t^{-1} -4 t^{-2} + t^{-3} </math>" .
<knot:10_156> <invariant:Alexander_Polynomial> "<math>t^3-4 t^2+8 t-9+8 t^{-1} -4 t^{-2} + t^{-3} </math>" .
<knot:10_157> <invariant:Alexander_Polynomial> "<math>-t^3+6 t^2-11 t+13-11 t^{-1} +6 t^{-2} - t^{-3} </math>" .
<knot:10_157> <invariant:Alexander_Polynomial> "<math>-t^3+6 t^2-11 t+13-11 t^{-1} +6 t^{-2} - t^{-3} </math>" .
Line 57: Line 57:
11 crossings knots with [[The Determinant and the Signature|determinant]] equal to 1:
11 crossings knots with [[The Determinant and the Signature|determinant]] equal to 1:
<pre>
<pre>
[drorbn@katlas ~/TakeHomeDatabase]$ zgrep Determinant Knots11.rdf.gz | grep \"1\"
[drorbn@katlas ~/Data]$ zgrep Determinant Knots11.rdf.gz | grep \"1\"
<knot:K11n34> <invariant:Determinant> "1" .
<knot:K11n34> <invariant:Determinant> "1" .
<knot:K11n42> <invariant:Determinant> "1" .
<knot:K11n42> <invariant:Determinant> "1" .

Revision as of 13:39, 18 July 2007

Stop hand.png This page is still under construction.
Use the information here at your own risk. You can check the history of the page to see how recently it has been worked on, and who has been contributing. Feel free to remove this notice if it seems appropriate!

All knot data on the Knot Atlas is now available as a take-home database file in compressed RDF (Resource Description Framework) format. Load it and use it as follows.

Loading

Pick up the full untreated unsorted monster katlas.rdf.gz and save it somewhere where you have a lot of space; it is almost 50MB compressed and almost 400MB uncompressed.

Alternatively, pick up one of the sorted smaller pieces from our Data directory:

Using From a Linux Shell

The examples in this section assume that you have downloaded all the "small pieces" from the previous section and places them in your working directory, but that you did not bother to uncompress them.

The Jones polynomial of 10_71:

[drorbn@katlas ~/Data]$ zgrep 10_71 Rolfsen.rdf.gz | grep Jones_Polynomial
<knot:10_71> <invariant:Jones_Polynomial> "<math>-q^5+3 q^4-6 q^3+10 q^2-12 q+13-12 q^{-1} +10 q^{-2} -6 q^{-3} +3 q^{-4} - q^{-5} </math>" .

The first few invariants (lexicographically) of 10_71:

[drorbn@katlas ~/Data]$ zgrep knot:10_71 Rolfsen.rdf.gz | head
<knot:10_71> <invariant:2nd_AlexanderIdeal> "<math>\\{1\\}</math>" .
<knot:10_71> <invariant:3-Genus> "3" .
<knot:10_71> <invariant:Alexander_Polynomial> "<math>-t^3+7 t^2-18 t+25-18 t^{-1} +7 t^{-2} - t^{-3} </math>" .
<knot:10_71> <invariant:BraidIndex> "5" .
<knot:10_71> <invariant:BraidWord> "<math>\\textrm{BR}(5,\\{-1,-1,2,-1,-3,2,2,4,-3,4\\})</math>" .
<knot:10_71> <invariant:Bridge_Index> "3" .
<knot:10_71> <invariant:ConcordanceGenus> "<math>3</math>" .
<knot:10_71> <invariant:Conway_Notation> "[22,21,2+]" .
<knot:10_71> <invariant:ConwayNotation> "[22,21,2+]" .
<knot:10_71> <invariant:Conway_Polynomial> "<math>-z^6+z^4+z^2+1</math>" .

The Alexander Polynomials of the last few knots in the Rolfsen table:

[drorbn@katlas ~/Data]$ zgrep Alexander_Polynomial Rolfsen.rdf.gz | tail
<knot:10_156> <invariant:Alexander_Polynomial> "<math>t^3-4 t^2+8 t-9+8 t^{-1} -4 t^{-2} + t^{-3} </math>" .
<knot:10_157> <invariant:Alexander_Polynomial> "<math>-t^3+6 t^2-11 t+13-11 t^{-1} +6 t^{-2} - t^{-3} </math>" .
<knot:10_158> <invariant:Alexander_Polynomial> "<math>-t^3+4 t^2-10 t+15-10 t^{-1} +4 t^{-2} - t^{-3} </math>" .
<knot:10_159> <invariant:Alexander_Polynomial> "<math>t^3-4 t^2+9 t-11+9 t^{-1} -4 t^{-2} + t^{-3} </math>" .
<knot:10_160> <invariant:Alexander_Polynomial> "<math>-t^3+4 t^2-4 t+3-4 t^{-1} +4 t^{-2} - t^{-3} </math>" .
<knot:10_161> <invariant:Alexander_Polynomial> "<math>t^3-2 t+3-2 t^{-1} + t^{-3} </math>" .
<knot:10_162> <invariant:Alexander_Polynomial> "<math>-3 t^2+9 t-11+9 t^{-1} -3 t^{-2} </math>" .
<knot:10_163> <invariant:Alexander_Polynomial> "<math>t^3-5 t^2+12 t-15+12 t^{-1} -5 t^{-2} + t^{-3} </math>" .
<knot:10_164> <invariant:Alexander_Polynomial> "<math>3 t^2-11 t+17-11 t^{-1} +3 t^{-2} </math>" .
<knot:10_165> <invariant:Alexander_Polynomial> "<math>-2 t^2+10 t-15+10 t^{-1} -2 t^{-2} </math>" .

11 crossings knots with determinant equal to 1:

[drorbn@katlas ~/Data]$ zgrep Determinant Knots11.rdf.gz | grep \"1\"
<knot:K11n34> <invariant:Determinant> "1" .
<knot:K11n42> <invariant:Determinant> "1" .
<knot:K11n49> <invariant:Determinant> "1" .
<knot:K11n116> <invariant:Determinant> "1" .

Creating the database

If you have access to the katlas command line, you can follow these instructions for Creating the take home database.