L11n396: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
m (Reverted edits by 82.99.255.70 (Talk); changed back to last version by Drorbn) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 25: | Line 25: | ||
<tr align=center> |
<tr align=center> |
||
<td width=12.5%><table cellpadding=0 cellspacing=0> |
<td width=12.5%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> |
<tr><td>\</td><td> </td><td>r</td></tr> |
||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=6.25%>-5</td ><td width=6.25%>-4</td ><td width=6.25%>-3</td ><td width=6.25%>-2</td ><td width=6.25%>-1</td ><td width=6.25%>0</td ><td width=6.25%>1</td ><td width=6.25%>2</td ><td width=6.25%>3</td ><td width=6.25%>4</td ><td width=6.25%>5</td ><td width=6.25%>6</td ><td width=12.5%>χ</td></tr> |
|||
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=red>1</td><td>1</td></tr> |
|||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=red>1</td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=red>1</td><td bgcolor=red>2</td><td bgcolor=red>1</td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=red>1</td><td bgcolor=red>2</td><td bgcolor=red>1</td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=red>2</td><td bgcolor=red>3</td><td bgcolor=red>2</td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=red>3</td><td bgcolor=red>3</td><td bgcolor=red>2</td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=red>2</td><td bgcolor=red>6</td><td bgcolor=red>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td> </td><td> </td><td bgcolor=red>2</td><td bgcolor=red>3</td><td bgcolor=red>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>4</td></tr> |
|||
<tr align=center><td>-3</td><td> </td><td> </td><td bgcolor=red>1</td><td bgcolor=red>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-5</td><td> </td><td bgcolor=red>1</td><td bgcolor=red>2</td><td bgcolor=red>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-7</td><td> </td><td bgcolor=red>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-9</td><td bgcolor=red>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
</table> | |
|||
computer_talk = |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, NonAlternating, 396]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Length[Skeleton[Link[11, NonAlternating, 396]]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Link[11, NonAlternating, 396]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 1, 7, 2], X[14, 7, 15, 8], X[4, 15, 1, 16], X[9, 22, 10, 19], |
|||
X[8, 4, 9, 3], X[21, 17, 22, 16], X[11, 5, 12, 18], X[5, 21, 6, 20], |
|||
X[17, 11, 18, 10], X[19, 12, 20, 13], X[2, 14, 3, 13]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Link[11, NonAlternating, 396]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[{1, -11, 5, -3}, {-10, 8, -6, 4}, |
|||
{-8, -1, 2, -5, -4, 9, -7, 10, 11, -2, 3, 6, -9, 7}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Link[11, NonAlternating, 396]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, 2, -3, 2, 2, -3, 2, -1, -2, 3, -2, 3, -2}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 396]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11n396_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[7]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, NonAlternating, 396]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>1</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, NonAlternating, 396]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 2 2 3 2 3 4 5 6 |
|||
1 - q + -- - -- + - + q + q - 2 q + 2 q - 2 q + q |
|||
3 2 q |
|||
q q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[11, NonAlternating, 396]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 -8 2 4 7 2 4 6 8 10 12 |
|||
9 - q - q + -- + -- + -- + 5 q + 4 q - q - q - q - q + |
|||
6 4 2 |
|||
q q q |
|||
14 18 |
|||
q + q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[11, NonAlternating, 396]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 |
|||
2 6 2 2 1 a 2 3 z 11 z 2 2 |
|||
6 + -- - -- - 2 a - -- + ----- + -- + 11 z + ---- - ----- - 3 a z + |
|||
4 2 2 2 2 2 4 2 |
|||
a a z a z z a a |
|||
4 4 6 |
|||
4 z 6 z 2 4 6 z |
|||
6 z + -- - ---- - a z + z - -- |
|||
4 2 2 |
|||
a a a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[11, NonAlternating, 396]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
|||
4 12 2 2 1 a 2 2 a 4 z 14 z 18 z |
|||
13 + -- + -- + 4 a + -- + ----- + -- - --- - --- - --- - ---- - ---- - |
|||
4 2 2 2 2 2 a z z 5 3 a |
|||
a a z a z z a a |
|||
2 2 2 3 |
|||
3 2 2 z 8 z 40 z 2 2 8 z |
|||
10 a z - 2 a z - 44 z + ---- - ---- - ----- - 14 a z + ---- + |
|||
6 4 2 5 |
|||
a a a a |
|||
3 3 4 4 4 |
|||
26 z 32 z 3 3 3 4 4 z 11 z 59 z |
|||
----- + ----- + 20 a z + 6 a z + 61 z - ---- + ----- + ----- + |
|||
3 a 6 4 2 |
|||
a a a a |
|||
5 5 5 6 |
|||
2 4 9 z 10 z 4 z 5 3 5 6 z |
|||
17 a z - ---- - ----- - ---- - 8 a z - 5 a z - 33 z + -- - |
|||
5 3 a 6 |
|||
a a a |
|||
6 6 7 7 7 |
|||
10 z 33 z 2 6 2 z 3 z 9 z 7 3 7 |
|||
----- - ----- - 11 a z + ---- - ---- - ---- - 3 a z + a z + |
|||
4 2 5 3 a |
|||
a a a a |
|||
8 8 9 9 |
|||
8 2 z 5 z 2 8 z 2 z 9 |
|||
5 z + ---- + ---- + 2 a z + -- + ---- + a z |
|||
4 2 3 a |
|||
a a a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, NonAlternating, 396]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5 3 1 1 1 2 1 1 |
|||
- + 6 q + 3 q + ----- + ----- + ----- + ----- + ----- + ----- + |
|||
q 9 5 7 4 5 4 5 3 3 3 5 2 |
|||
q t q t q t q t q t q t |
|||
2 2 3 2 q 3 5 3 2 |
|||
----- + ---- + --- + --- + 2 q t + 3 q t + 2 q t + 2 q t + |
|||
3 2 2 q t t |
|||
q t q t |
|||
5 2 7 2 5 3 7 3 9 3 7 4 9 4 |
|||
3 q t + q t + 2 q t + 2 q t + q t + q t + 2 q t + |
|||
9 5 11 5 13 6 |
|||
q t + q t + q t</nowiki></pre></td></tr> |
|||
</table> }} |
Latest revision as of 18:26, 28 August 2007
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n396's Link Presentations]
Planar diagram presentation | X6172 X14,7,15,8 X4,15,1,16 X9,22,10,19 X8493 X21,17,22,16 X11,5,12,18 X5,21,6,20 X17,11,18,10 X19,12,20,13 X2,14,3,13 |
Gauss code | {1, -11, 5, -3}, {-10, 8, -6, 4}, {-8, -1, 2, -5, -4, 9, -7, 10, 11, -2, 3, 6, -9, 7} |
A Braid Representative | |||||
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in , , , ...) | (db) |
Jones polynomial | (db) |
Signature | 1 (db) |
HOMFLY-PT polynomial | (db) |
Kauffman polynomial | (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|