Template:Link Page: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
No edit summary |
||
(41 intermediate revisions by 9 users not shown) | |||
Line 1: | Line 1: | ||
<span id="top"></span> |
<span id="top"></span> |
||
{{Knot Navigation Links|ext=gif}} |
{{Knot Navigation Links|ext=gif}} |
||
{{TOCright}} |
|||
{| |
{| |
||
|- |
|- |
||
| valign="top" rowspan=2 | [[Image:{{PAGENAME}}.gif]] |
| valign="top" rowspan=2 align=center| [[Image:{{PAGENAME}}.gif]]<br><font size=-2>([[Further_Knot_Theory_Software#Knotscape|Knotscape]] image)</font> |
||
|See the full [[The Thistlethwaite Link Table|Thistlethwaite Link Table]] (up to 11 crossings). |
|||
| Visit [{{{KnotilusURL}}} {{PAGENAME}}'s page] at [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html Knotilus]! |
|||
Visit [http://knotilus.math.uwo.ca/draw.php?knot={{Data:{{PAGENAME}}/KnotilusGaussCode}} {{PAGENAME}}] at [http://knotilus.math.uwo.ca/ Knotilus]! |
|||
Visit [http://www.math.toronto.edu/~drorbn/KAtlas/Links/{{{n{{{t}}}{{{k}}}.html {{PAGENAME}}'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]!}|t={{{t}}}|k={{{k}}}|KnotilusURL={{{KnotilusURL}}}}} |
|||
|- |
|- |
||
| valign="top" | {{ |
| valign="top" | {{floating edit link|{{PAGENAME}} Quick Notes}} |
||
{{#ifexist:{{PAGENAME}} Quick Notes|{{:{{PAGENAME}} Quick Notes}}|}} |
|||
|} |
|} |
||
⚫ | |||
<br style="clear:both" /> |
|||
{{#ifexist:{{PAGENAME}} Further Notes and Views|{{:{{PAGENAME}} Further Notes and Views}}|}} |
|||
<div style="border: solid pink 1px"> |
|||
⚫ | |||
⚫ | |||
<!-- first some comments, and an 'edit comments' link --> |
|||
⚫ | |||
{{edit link|Notes on {{PAGENAME}}'s Link Presentations}} |
|||
{{#ifexist:Notes on {{PAGENAME}}'s Link Presentations|{{:Notes on {{PAGENAME}}'s Link Presentations}}|}} |
|||
{| |
|||
|- valign=top |
|||
|'''[[Planar Diagrams|Planar diagram presentation]]''' |
|||
|style="padding-left: 1em; word-wrap: break-word" | {{Data:{{PAGENAME}}/PD Presentation}} |
|||
|- valign=top |
|||
|'''[[Gauss Codes|Gauss code]]''' |
|||
|style="padding-left: 1em; word-wrap: break-word" | {{Data:{{PAGENAME}}/Gauss Code}} |
|||
|} |
|||
{| |
|||
|- valign=top |
|||
|'''[[Braid Representatives|A Braid Representative]]''' |
|||
|style="padding-left: 1em;" | {{{braid_table}}} |
|||
|- valign=top |
|||
|'''[[MorseLink Presentations|A Morse Link Presentation]]''' |
|||
|style="padding-left: 1em;" | [[Image:{{PAGENAME}}_ML.gif]] |
|||
|} |
|||
</div> |
|||
{{Link Polynomial Invariants}} |
{{Link Polynomial Invariants}} |
||
⚫ | |||
{{Vassiliev Invariants}} |
|||
⚫ | |||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
<div style="border: solid pink 1px"> |
|||
{{{computer_talk}}} |
|||
=== Modifying This Page === |
|||
{| width=100% |
{| width=100% |
||
|- valign=bottom |
|||
|align=left|See/edit the [[Link_Splice_Template]]. |
|||
|align=left|'''Read me first:''' [[Modifying Knot Pages]] |
|||
See/edit the [[Template:Link Page|Link Page]] master template (intermediate). |
|||
See/edit the [[Link_Splice_Base]] (expert). |
|||
Back to the [[#top|top]]. |
Back to the [[#top|top]]. |
||
|align=right|{{Knot Navigation Links|ext=gif}} |
|align=right|{{Knot Navigation Links|ext=gif}} |
||
|} |
|} |
||
</div> |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
Latest revision as of 00:30, 3 July 2015
[[Image:Data:Link Page/Previous Knot.gif|80px|link=Data:Link Page/Previous Knot]] |
[[Image:Data:Link Page/Next Knot.gif|80px|link=Data:Link Page/Next Knot]] |
File:Link Page.gif (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings).
Visit Data:Link Page/KnotilusGaussCode Link Page at Knotilus! |
Link Presentations
[edit Notes on Link Page's Link Presentations]
Planar diagram presentation | Data:Link Page/PD Presentation |
Gauss code | Data:Link Page/Gauss Code |
A Braid Representative | {{{braid_table}}} |
A Morse Link Presentation | File:Link Page ML.gif |
Polynomial invariants
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). | Data:Link Page/KhovanovTable |
Integral Khovanov Homology
(db, data source) |
Data:Link Page/Integral Khovanov Homology |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|