T(5,2): Difference between revisions
From Knot Atlas
				
				
				Jump to navigationJump to search
				
				DrorsRobot (talk | contribs) No edit summary  | 
				DrorsRobot (talk | contribs)  No edit summary  | 
				||
| Line 1: | Line 1: | ||
<!-- Script generated - do not edit! -->  | 
  <!-- Script generated - do not edit! -->  | 
||
| ⚫ | |||
<!--  -->  | 
  |||
| ⚫ | |||
<span id="top"></span>  | 
  |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
===Knot presentations===  | 
  ===Knot presentations===  | 
||
| Line 15: | Line 11: | ||
{|  | 
  {|  | 
||
|'''[[Planar Diagrams|Planar diagram presentation]]'''  | 
  |'''[[Planar Diagrams|Planar diagram presentation]]'''  | 
||
|style="padding-left: 1em;" | X<sub>  | 
  |style="padding-left: 1em;" | X<sub>3146</sub> X<b > 152/sub> X<sub>5362</sub>   | 
||
|-  | 
  |-  | 
||
|'''[[Gauss Codes|Gauss code]]'''  | 
  |'''[[Gauss Codes|Gauss code]]'''  | 
||
|style=  | 
  |style=$Failed-2, 3, -1, 2, -3, 1}  | 
||
|-  | 
  |-  | 
||
|'''[[DT (Dowker-Thistlethwaite) Codes|Dowker-Thistlethwaite code]]'''  | 
  |'''[[DT (Dowker-Thistlethwaite) Codes|Dowker-Thistlethwaite code]]'''  | 
||
|style="  | 
  |style="pa$Failedial Invariants|name=T(3,2)}}  | 
||
|}  | 
  |||
===Polynomial invariants===  | 
  |||
{{Polynomial Invariants|name=T(5,2)}}  | 
  |||
===[[Finite Type (Vassiliev)   | 
  ===[[Finite Type (Vassiliev) Invaants | Vasliev invariants]]===  | 
||
{| style="margin-left: 1em;"  | 
  {| style="margin-left: 1em;"  | 
||
|-  | 
  |-  | 
||
|'''V<sub>2</sub> and V<sub>3</sub>'''  | 
  |'''V<sub>2</sub> and V<sub>3</sub>'''  | 
||
|style="padding-left: 1em;" | {0,   | 
  |style="padding-left: 1em;" | {0, 1})  | 
||
|}  | 
  |}  | 
||
[[Khovanov Homology]]. The   | 
  [[Khovanov Homology]]. The coefficien$Failed> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>2 is the signature of T(3,2). Nonzero entries off the critical diagonals (if any $Failed in <font class=HLRed$Failed  | 
||
<center><table border=1>  | 
  <center><table border=1>  | 
||
<tr align=center>  | 
  <tr align=center>  | 
||
<td width=  | 
  <td width=25.%><table cellpadding=0 cellspacing=0>  | 
||
<tr><td>\</td><td> </td><td>  | 
  <tr><td>\</td><td>&nbs$Failed;</td><td> \ </td><td> </td></tr>  | 
||
<tr><td> </td><td> \ </td><td> </td></tr>  | 
  |||
<tr><td>j</td><td> </td><td>\</td></tr>  | 
  <tr><td>j</td><td> </td><td>\</td></tr>  | 
||
</table></td>  | 
  </table></td>  | 
||
<td width=  | 
  <td width=12.5%>0</td ><td width=12.5%>1</td ><td width=12.5%>2</td ><td width=12.5%>3</td ><td width=25.%>χ</td></tr>  | 
||
<tr align=center><td>  | 
  <tr align=center><td>9</td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>$Failed<td> </td><t$Failedo$Failedo$Failed>$Failed>$Failedl$Failedl$Failedd$Failed>$Failed&$Failedd$Failed>$Failed>$Failedo$Failedp$Failed align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td>  | 
||
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td>0</td></tr>  | 
  |||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td>0</td></tr>  | 
  |||
<tr align=center><td>9</td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td>0</td></tr>  | 
  |||
<tr align=center><td>7</td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td>1</td></tr>  | 
  |||
<tr align=center><td>5</td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr>  | 
  |||
<tr align=center><td>3</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr>  | 
  |||
</table></center>  | 
  |||
{{Computer Talk Header}}  | 
  |||
<table>  | 
  |||
<tr valign=top>  | 
  |||
| ⚫ | |||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td>  | 
  |||
</tr>  | 
  </tr>  | 
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 19, 2005, 13:11:25)...</pre></td></tr>  | 
  <tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 19, 2005, 13:11:25)...</pre></td></tr>  | 
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[TorusKnot[  | 
  <tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[TorusKnot[3, 2]]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=   </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>  | 
  <tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=   </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[  | 
  <tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[3, 2]]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=   </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[3,   | 
  <tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=   </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[3, 1, 4, 6], X[1, 5, 2, 4], X[5, 3, 6, 2]]</nowiki></pre></td></tr>  | 
||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[  | 
  <tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[TorusKnot[3, 2]]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=   </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[2, {1, 1, 1}]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[  | 
  <tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[3, 2]][t]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=   </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     1  | 
||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
1 + z</nowiki></pre></td></tr>  | 
|||
| ⚫ | |||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=   </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       2    4  | 
  |||
1 + 3 z  + z</nowiki></pre></td></tr>  | 
  |||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>  | 
  <tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=   </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[  | 
  <tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=   </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[3, 1]}</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[TorusKnot[  | 
  <tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[TorusKnot[3, 2]], KnotSignature[TorusKnot[3, 2]]}</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=   </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{  | 
  <tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=   </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 2}</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[TorusKnot[  | 
  <tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[TorusKnot[3, 2]][q]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=   </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>   | 
  <tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=   </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     3    4  | 
||
q  | 
  q + q  - q</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>  | 
  <tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=   </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[  | 
  <tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=   </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[3, 1]}</nowiki></pre></td></tr>  | 
||
Include[ColouredJonesM.mhtml]  | 
  Include[ColouredJonesM.mhtml]  | 
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[TorusKnot[  | 
  <tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[TorusKnot[3, 2]][q]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=   </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>   | 
  <tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=   </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2    4      6    8    12    14  | 
||
q  + q  + 2 q  | 
  q  + q  + 2 q  + q  - q   - q</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[  | 
  <tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[3, 2]][a, z]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=   </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>  | 
  <tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=   </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                       2    2  | 
||
  -4   2    z    z    z    z  | 
|||
-  | 
  -a   - -- + -- + -- + -- + --  | 
||
        2    5    3    4    2  | 
|||
       a    a    a    a    a</nowiki></pre></td></tr>  | 
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[  | 
  <tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[3, 2]], Vassiliev[3][TorusKnot[3, 2]]}</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=   </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0,   | 
  <tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=   </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 1}</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[  | 
  <tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[3, 2]][q, t]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=   </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>   | 
  <tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=   </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     3    5  2    9  3  | 
||
q  | 
  q + q  + q  t  + q  t</nowiki></pre></td></tr>  | 
||
</table>  | 
  </table>  | 
||
Revision as of 18:33, 26 August 2005