L11n459: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice template "Link_Splice_Template". Please do not edit! --> |
|||
<!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit! |
|||
<!-- --> <!-- |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
--> |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
|||
<!-- --> |
|||
<!-- --> |
|||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
|||
<!-- Almost certainly, you want to edit [[Template:Link Page]], which actually produces this page. |
|||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
|||
<!-- --> |
|||
{{Link Page| |
{{Link Page| |
||
n = |
n = 11 | |
||
t = |
t = n | |
||
k = |
k = 459 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2: |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:-4,3,-6,5:10,-1,-3,9,-8,4:11,-2,-5,7,-9,8,-7,6/goTop.html | |
||
khovanov_table = <table border=1> |
khovanov_table = <table border=1> |
||
<tr align=center> |
<tr align=center> |
||
<td width= |
<td width=12.5%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
<tr><td>\</td><td> </td><td>r</td></tr> |
||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width= |
<td width=6.25%>-4</td ><td width=6.25%>-3</td ><td width=6.25%>-2</td ><td width=6.25%>-1</td ><td width=6.25%>0</td ><td width=6.25%>1</td ><td width=6.25%>2</td ><td width=6.25%>3</td ><td width=6.25%>4</td ><td width=6.25%>5</td ><td width=6.25%>6</td ><td width=6.25%>7</td ><td width=12.5%>χ</td></tr> |
||
<tr align=center><td> |
<tr align=center><td>16</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=red>1</td><td>-1</td></tr> |
||
<tr align=center><td> |
<tr align=center><td>14</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=red>1</td><td> </td><td>1</td></tr> |
||
<tr align=center><td> |
<tr align=center><td>12</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=red>1</td><td bgcolor=red>1</td><td bgcolor=red>1</td><td> </td><td>1</td></tr> |
||
<tr align=center><td> |
<tr align=center><td>10</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=red>1</td><td bgcolor=red>3</td><td bgcolor=red>1</td><td> </td><td> </td><td>1</td></tr> |
||
<tr align=center><td>8</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=red>2</td><td bgcolor=red>2</td><td bgcolor=red>2</td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>6</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=red>3</td><td bgcolor=red>6</td><td bgcolor=red>2</td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>4</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=red>1</td><td bgcolor=red>2</td><td bgcolor=red>4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>3</td></tr> |
|||
<tr align=center><td>2</td><td> </td><td> </td><td> </td><td bgcolor=red>2</td><td bgcolor=red>5</td><td bgcolor=red>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>0</td><td> </td><td> </td><td bgcolor=red>1</td><td bgcolor=red>1</td><td bgcolor=red>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>3</td></tr> |
|||
<tr align=center><td>-2</td><td> </td><td> </td><td bgcolor=red>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-4</td><td bgcolor=red>1</td><td bgcolor=red>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-6</td><td bgcolor=red>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
</table> | |
</table> | |
||
computer_talk = |
computer_talk = |
||
Line 27: | Line 44: | ||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, NonAlternating, 459]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Length[Skeleton[Link[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Length[Skeleton[Link[11, NonAlternating, 459]]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Link[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Link[11, NonAlternating, 459]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 1, 7, 2], X[12, 3, 13, 4], X[7, 21, 8, 20], X[19, 5, 20, 10], |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Link[2, Alternating, 1]]</nowiki></pre></td></tr> |
|||
X[13, 19, 14, 22], X[21, 11, 22, 18], X[17, 15, 18, 14], |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[{1, -2}, {2, -1}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Link[2, Alternating, 1]]</nowiki></pre></td></tr> |
|||
X[9, 17, 10, 16], X[15, 9, 16, 8], X[2, 5, 3, 6], X[4, 11, 1, 12]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[Link[2, Alternating, 1]]</nowiki></pre></td></tr> |
|||
<tr |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Link[11, NonAlternating, 459]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[{1, -10, 2, -11}, {-4, 3, -6, 5}, {10, -1, -3, 9, -8, 4}, |
|||
{11, -2, -5, 7, -9, 8, -7, 6}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Link[11, NonAlternating, 459]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[Link[11, NonAlternating, 459]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 459]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11n459_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[7]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Link[11, NonAlternating, 459]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>ComplexInfinity</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>ComplexInfinity</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Link[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Link[11, NonAlternating, 459]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>ComplexInfinity</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>ComplexInfinity</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Link[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Link[11, NonAlternating, 459]], KnotSignature[Link[11, NonAlternating, 459]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Infinity, |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Infinity, 2}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, NonAlternating, 459]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(5/2) |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(5/2) -(3/2) 3 3/2 5/2 9/2 11/2 |
||
-q - ------- |
-q + q - ------- - 2 q - q - 2 q + q - |
||
Sqrt[q] |
Sqrt[q] |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[2, Alternating, 1]][q]</nowiki></pre></td></tr> |
|||
13/2 15/2 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -10 2 2 2 -2 |
|||
2 q + q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[11, NonAlternating, 459]][q]</nowiki></pre></td></tr> |
|||
8 6 4 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -8 -6 3 5 2 4 6 8 10 |
|||
q q q</nowiki></pre></td></tr> |
|||
8 + q + q + -- + -- + 10 q + 10 q + 12 q + 10 q + 8 q + |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[2, Alternating, 1]][a, z]</nowiki></pre></td></tr> |
|||
4 2 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 |
|||
q q |
|||
-(-) + -- - a z |
|||
12 14 16 18 20 24 |
|||
z z</nowiki></pre></td></tr> |
|||
6 q + 3 q + 3 q + q + q - q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[2, Alternating, 1]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[11, NonAlternating, 459]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 1 3 3 a 2 7 8 3 a z 2 z |
|||
2 a a 3 |
|||
- |
-(-----) + ----- - ---- + -- - ---- + ---- - --- + --- + -- - --- + |
||
5 3 3 3 3 3 5 3 a z z 7 5 |
|||
z z</nowiki></pre></td></tr> |
|||
a z a z a z z a z a z a a |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Link[2, Alternating, 1]], Vassiliev[3][Link[2, Alternating, 1]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 17 |
|||
3 3 3 5 |
|||
{0, -(--)} |
|||
6 z 8 z z z 5 z 3 z |
|||
48</nowiki></pre></td></tr> |
|||
--- - --- + 3 a z - -- + -- - ---- + a z - -- |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[2, Alternating, 1]][q, t]</nowiki></pre></td></tr> |
|||
3 a 5 3 a a |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 1 1 |
|||
a a a</nowiki></pre></td></tr> |
|||
1 + q + ----- + ----- |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[11, NonAlternating, 459]][a, z]</nowiki></pre></td></tr> |
|||
6 2 4 2 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 10 19 1 3 3 a 3 3 6 5 |
|||
q t q t</nowiki></pre></td></tr> |
|||
10 + -- + -- + ----- + ----- + ---- + -- - -- - ----- - ----- - ---- - |
|||
4 2 5 3 3 3 3 3 2 4 2 2 2 5 |
|||
a a a z a z a z z z a z a z a z |
|||
2 |
|||
12 12 5 a 6 z 20 z 27 z 23 z 2 2 z |
|||
---- - --- - --- + --- + ---- + ---- + ---- + 10 a z - 10 z - ---- - |
|||
3 a z z 7 5 3 a 8 |
|||
a z a a a a |
|||
2 2 3 3 3 3 4 |
|||
2 z 10 z 12 z 39 z 35 z 19 z 3 4 4 z |
|||
---- - ----- - ----- - ----- - ----- - ----- - 11 a z + z + ---- - |
|||
6 2 7 5 3 a 8 |
|||
a a a a a a |
|||
4 4 5 5 5 5 6 |
|||
23 z 18 z 10 z 25 z 12 z 3 z 5 6 z |
|||
----- - ----- + ----- + ----- + ----- + ---- + 6 a z + 4 z - -- + |
|||
4 2 7 5 3 a 8 |
|||
a a a a a a |
|||
6 6 6 7 7 7 7 8 |
|||
4 z 18 z 17 z 2 z 4 z 3 z 4 z 7 8 z |
|||
---- + ----- + ----- - ---- - ---- + ---- + ---- - a z - z - -- - |
|||
6 4 2 7 5 3 a 6 |
|||
a a a a a a a |
|||
8 8 9 9 |
|||
3 z 3 z z z |
|||
---- - ---- - -- - -- |
|||
4 2 3 a |
|||
a a a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Link[11, NonAlternating, 459]], Vassiliev[3][Link[11, NonAlternating, 459]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 47 |
|||
{0, --} |
|||
12</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, NonAlternating, 459]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
|||
2 4 1 1 1 -2 2 1 2 q 2 |
|||
3 + 5 q + q + ----- + ----- + ----- + t + ----- + - + ---- + q t + |
|||
6 4 4 4 4 3 2 2 t t |
|||
q t q t q t q t |
|||
4 6 4 2 6 2 8 2 6 3 8 3 |
|||
2 q t + 3 q t + 4 q t + 6 q t + 2 q t + 2 q t + 2 q t + |
|||
10 3 8 4 10 4 12 4 10 5 12 5 12 6 |
|||
q t + 2 q t + 3 q t + q t + q t + q t + q t + |
|||
14 6 16 7 |
|||
q t + q t</nowiki></pre></td></tr> |
|||
</table> }} |
</table> }} |
Revision as of 10:40, 31 August 2005
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n459's Link Presentations]
Planar diagram presentation | X6172 X12,3,13,4 X7,21,8,20 X19,5,20,10 X13,19,14,22 X21,11,22,18 X17,15,18,14 X9,17,10,16 X15,9,16,8 X2536 X4,11,1,12 |
Gauss code | {1, -10, 2, -11}, {-4, 3, -6, 5}, {10, -1, -3, 9, -8, 4}, {11, -2, -5, 7, -9, 8, -7, 6} |
A Braid Representative | {{{braid_table}}} |
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in , , , ...) | (db) |
Jones polynomial | (db) |
Signature | 2 (db) |
HOMFLY-PT polynomial | (db) |
Kauffman polynomial | (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|