Link Splice Base: Difference between revisions
No edit summary |
No edit summary |
||
Line 24: | Line 24: | ||
<*InOut["PD[``]", K]*> |
<*InOut["PD[``]", K]*> |
||
<*InOut["GaussCode[``]", K]*> |
<*InOut["GaussCode[``]", K]*> |
||
<*InOut["BR[``]", K]*> |
|||
<*GraphicsBox[NameString[K]<>"_ML.gif", "Show[DrawMorseLink[``]]", K]*> |
<*GraphicsBox[NameString[K]<>"_ML.gif", "Show[DrawMorseLink[``]]", K]*> |
||
<*InOut[" |
<*InOut["KnotSignature[`1`]", K]*> |
||
<*InOut["Conway[``][z]", K]*> |
|||
<*InOut["Select[AllKnots[], (alex === Alexander[#][t])&]"]*> |
|||
<*InOut["{KnotDet[`1`], KnotSignature[`1`]}", K]*> |
|||
<*InOut["J=Jones[``][q]", K]*> |
<*InOut["J=Jones[``][q]", K]*> |
||
<*InOut["A2Invariant[``][q]", K]*> |
<*InOut["A2Invariant[``][q]", K]*> |
||
<*InOut["HOMFLYPT[``][a, z]", K]*> |
<*InOut["HOMFLYPT[``][a, z]", K]*> |
||
<*InOut["Kauffman[``][a, z]", K]*> |
<*InOut["Kauffman[``][a, z]", K]*> |
||
<*InOut["{Vassiliev[2][`1`], Vassiliev[3][`1`]}", K ]*> |
|||
<*InOut["Kh[``][q, t]", K]*> |
<*InOut["Kh[``][q, t]", K]*> |
||
</table> }} |
</table> }} |
Revision as of 11:32, 31 August 2005
[[Image:Data:Link Splice Base/Previous Knot.gif|80px|link=Data:Link Splice Base/Previous Knot]] |
[[Image:Data:Link Splice Base/Next Knot.gif|80px|link=Data:Link Splice Base/Next Knot]] |
File:Link Splice Base.gif (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings).
Visit Data:Link Splice Base/KnotilusGaussCode Link Splice Base at Knotilus! |
Link Presentations
[edit Notes on Link Splice Base's Link Presentations]
Planar diagram presentation | Data:Link Splice Base/PD Presentation |
Gauss code | Data:Link Splice Base/Gauss Code |
A Braid Representative | {{{braid_table}}} |
A Morse Link Presentation | File:Link Splice Base ML.gif |
Polynomial invariants
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). | Data:Link Splice Base/KhovanovTable |
Integral Khovanov Homology
(db, data source) |
Data:Link Splice Base/Integral Khovanov Homology |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|