L11n318: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was |
<!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit! |
||
<!-- --> <!-- |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
--> |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
|||
<!-- Almost certainly, you want to edit [[Template:Link Page]], which actually produces this page. |
|||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
| Line 33: | Line 42: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 28, 2005, 22:58:49)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, NonAlternating, 318]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, NonAlternating, 318]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
| Line 48: | Line 57: | ||
{4, -2, 7, -3, 11, -6, 5, 9, -8, -4, 6, -5}]</nowiki></pre></td></tr> |
{4, -2, 7, -3, 11, -6, 5, 9, -8, -4, 6, -5}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 318]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11n318_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, NonAlternating, 318]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>-4</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, NonAlternating, 318]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -11 4 8 11 14 15 12 11 5 3 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Link[11, NonAlternating, 318]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>ComplexInfinity</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Link[11, NonAlternating, 318]], KnotSignature[Link[11, NonAlternating, 318]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Infinity, -4}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, NonAlternating, 318]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -11 4 8 11 14 15 12 11 5 3 |
|||
-q + --- - -- + -- - -- + -- - -- + -- - -- + -- |
-q + --- - -- + -- - -- + -- - -- + -- - -- + -- |
||
10 9 8 7 6 5 4 3 2 |
10 9 8 7 6 5 4 3 2 |
||
q q q q q q q q q</nowiki></pre></td></tr> |
q q q q q q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[11, NonAlternating, 318]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -34 -30 4 2 -22 5 2 9 4 5 6 3 |
||
-q + q - --- - --- - q + --- + --- + --- + --- + --- + --- + -- |
-q + q - --- - --- - q + --- + --- + --- + --- + --- + --- + -- |
||
28 24 20 18 16 14 12 10 6 |
28 24 20 18 16 14 12 10 6 |
||
q q q q q q q q q</nowiki></pre></td></tr> |
q q q q q q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[11, NonAlternating, 318]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8 10 |
||
4 6 8 10 2 a 5 a 4 a a 4 2 |
4 6 8 10 2 a 5 a 4 a a 4 2 |
||
8 a - 15 a + 8 a - a + ---- - ---- + ---- - --- + 9 a z - |
8 a - 15 a + 8 a - a + ---- - ---- + ---- - --- + 9 a z - |
||
| Line 78: | Line 79: | ||
6 2 8 2 10 2 4 4 6 4 8 4 6 6 |
6 2 8 2 10 2 4 4 6 4 8 4 6 6 |
||
17 a z + 8 a z - a z + 3 a z - 9 a z + 3 a z - 2 a z</nowiki></pre></td></tr> |
17 a z + 8 a z - a z + 3 a z - 9 a z + 3 a z - 2 a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[11, NonAlternating, 318]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8 10 5 |
||
4 6 8 10 2 a 5 a 4 a a 5 a |
4 6 8 10 2 a 5 a 4 a a 5 a |
||
10 a + 20 a + 13 a + 2 a - ---- - ---- - ---- - --- + ---- + |
10 a + 20 a + 13 a + 2 a - ---- - ---- - ---- - --- + ---- + |
||
| Line 107: | Line 108: | ||
10 8 7 9 9 9 |
10 8 7 9 9 9 |
||
6 a z + 2 a z + 2 a z</nowiki></pre></td></tr> |
6 a z + 2 a z + 2 a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, NonAlternating, 318]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2 3 1 3 1 5 3 6 |
||
{0, -(-)} |
|||
3</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, NonAlternating, 318]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2 3 1 3 1 5 3 6 |
|||
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
||
5 3 23 9 21 8 19 8 19 7 17 7 17 6 |
5 3 23 9 21 8 19 8 19 7 17 7 17 6 |
||
Revision as of 11:51, 31 August 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n318's Link Presentations]
| Planar diagram presentation | X6172 X12,4,13,3 X14,5,15,6 X20,11,21,12 X22,17,11,18 X16,21,17,22 X10,13,5,14 X19,8,20,9 X7,18,8,19 X2,9,3,10 X4,16,1,15 |
| Gauss code | {1, -10, 2, -11}, {3, -1, -9, 8, 10, -7}, {4, -2, 7, -3, 11, -6, 5, 9, -8, -4, 6, -5} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{u v^2 w^3-2 u v^2 w^2+u v^2 w+u v w^4-3 u v w^3+5 u v w^2-3 u v w+u w^3-2 u w^2+2 u w-2 v^2 w^3+2 v^2 w^2-v^2 w+3 v w^3-5 v w^2+3 v w-v-w^3+2 w^2-w}{\sqrt{u} v w^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ - q^{-11} +4 q^{-10} -8 q^{-9} +11 q^{-8} -14 q^{-7} +15 q^{-6} -12 q^{-5} +11 q^{-4} -5 q^{-3} +3 q^{-2} }[/math] (db) |
| Signature | -4 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^2 a^{10}-a^{10} z^{-2} -a^{10}+3 z^4 a^8+8 z^2 a^8+4 a^8 z^{-2} +8 a^8-2 z^6 a^6-9 z^4 a^6-17 z^2 a^6-5 a^6 z^{-2} -15 a^6+3 z^4 a^4+9 z^2 a^4+2 a^4 z^{-2} +8 a^4 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{13} z^5-a^{13} z^3+4 a^{12} z^6-6 a^{12} z^4+a^{12} z^2+7 a^{11} z^7-13 a^{11} z^5+6 a^{11} z^3-2 a^{11} z+a^{11} z^{-1} +6 a^{10} z^8-8 a^{10} z^6+2 a^{10} z^4-3 a^{10} z^2-a^{10} z^{-2} +2 a^{10}+2 a^9 z^9+9 a^9 z^7-28 a^9 z^5+27 a^9 z^3-13 a^9 z+5 a^9 z^{-1} +11 a^8 z^8-27 a^8 z^6+35 a^8 z^4-27 a^8 z^2-4 a^8 z^{-2} +13 a^8+2 a^7 z^9+5 a^7 z^7-20 a^7 z^5+33 a^7 z^3-27 a^7 z+9 a^7 z^{-1} +5 a^6 z^8-15 a^6 z^6+33 a^6 z^4-37 a^6 z^2-5 a^6 z^{-2} +20 a^6+3 a^5 z^7-6 a^5 z^5+13 a^5 z^3-16 a^5 z+5 a^5 z^{-1} +6 a^4 z^4-14 a^4 z^2-2 a^4 z^{-2} +10 a^4 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



