L11a407: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was |
<!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit! |
||
<!-- --> <!-- |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
--> |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
|||
<!-- Almost certainly, you want to edit [[Template:Link Page]], which actually produces this page. |
|||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
| Line 35: | Line 44: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 28, 2005, 22:58:49)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 407]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 407]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
| Line 50: | Line 59: | ||
{11, -2, 3, -5, 4, -8, 7, -6, 9, -7, 8, -3}]</nowiki></pre></td></tr> |
{11, -2, 3, -5, 4, -8, 7, -6, 9, -7, 8, -3}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 407]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a407_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, Alternating, 407]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 407]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 2 7 2 3 4 5 6 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Link[11, Alternating, 407]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>ComplexInfinity</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Link[11, Alternating, 407]], KnotSignature[Link[11, Alternating, 407]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Infinity, 2}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 407]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 2 7 2 3 4 5 6 |
|||
-10 + q - -- + - + 16 q - 18 q + 19 q - 17 q + 13 q - 8 q + |
-10 + q - -- + - + 16 q - 18 q + 19 q - 17 q + 13 q - 8 q + |
||
2 q |
2 q |
||
| Line 69: | Line 70: | ||
7 8 |
7 8 |
||
4 q - q</nowiki></pre></td></tr> |
4 q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[11, Alternating, 407]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -10 -8 -6 6 3 2 4 6 8 12 |
||
4 + q + q + q + -- + -- + 7 q - q + 4 q - q + 2 q - |
4 + q + q + q + -- + -- + 7 q - q + 4 q - q + 2 q - |
||
4 2 |
4 2 |
||
| Line 77: | Line 78: | ||
14 16 18 20 22 24 |
14 16 18 20 22 24 |
||
3 q + 4 q - q - q + 2 q - q</nowiki></pre></td></tr> |
3 q + 4 q - q - q + 2 q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[11, Alternating, 407]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 2 |
||
-4 2 2 1 a 2 z 2 z z 2 2 |
-4 2 2 1 a 2 z 2 z z 2 2 |
||
-3 + a + 2 a - -- + ----- + -- - 4 z - -- + ---- - -- + a z - |
-3 + a + 2 a - -- + ----- + -- - 4 z - -- + ---- - -- + a z - |
||
| Line 89: | Line 90: | ||
6 4 2 4 2 |
6 4 2 4 2 |
||
a a a a a</nowiki></pre></td></tr> |
a a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[11, Alternating, 407]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
||
-6 -4 3 2 2 1 a 2 2 a 2 z 6 z |
-6 -4 3 2 2 1 a 2 2 a 2 z 6 z |
||
-6 - a - a - -- - 4 a + -- + ----- + -- - --- - --- - --- - --- + |
-6 - a - a - -- - 4 a + -- + ----- + -- - --- - --- - --- - --- + |
||
| Line 125: | Line 126: | ||
4 2 5 3 a 4 2 |
4 2 5 3 a 4 2 |
||
a a a a a a</nowiki></pre></td></tr> |
a a a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 407]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 1 2 5 2 5 5 q |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 407]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 1 2 5 2 5 5 q |
|||
11 q + 6 q + ----- + ----- + ----- + ----- + ---- + --- + --- + |
11 q + 6 q + ----- + ----- + ----- + ----- + ---- + --- + --- + |
||
7 4 5 4 5 3 3 2 2 q t t |
7 4 5 4 5 3 3 2 2 q t t |
||
Revision as of 11:52, 31 August 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a407's Link Presentations]
| Planar diagram presentation | X6172 X12,3,13,4 X22,14,11,13 X8,16,9,15 X14,8,15,7 X18,10,19,9 X20,18,21,17 X16,22,17,21 X10,20,5,19 X2536 X4,11,1,12 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 5, -4, 6, -9}, {11, -2, 3, -5, 4, -8, 7, -6, 9, -7, 8, -3} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{2 t(1) t(3)^2 t(2)^2-4 t(3)^2 t(2)^2+t(1) t(2)^2-3 t(1) t(3) t(2)^2+4 t(3) t(2)^2-t(2)^2-3 t(1) t(3)^2 t(2)+4 t(3)^2 t(2)-4 t(1) t(2)+7 t(1) t(3) t(2)-7 t(3) t(2)+3 t(2)+t(1) t(3)^2-t(3)^2+4 t(1)-4 t(1) t(3)+3 t(3)-2}{\sqrt{t(1)} t(2) t(3)} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^8+4 q^7-8 q^6+13 q^5-17 q^4+19 q^3-18 q^2+16 q-10+7 q^{-1} -2 q^{-2} + q^{-3} }[/math] (db) |
| Signature | 2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^4 a^{-6} -z^2 a^{-6} +z^6 a^{-4} +2 z^4 a^{-4} +2 z^2 a^{-4} + a^{-4} +z^6 a^{-2} +z^4 a^{-2} +a^2 z^2-z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} +2 a^2-2 z^4-4 z^2-2 z^{-2} -3 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^{10} a^{-2} +z^{10} a^{-4} +2 z^9 a^{-1} +6 z^9 a^{-3} +4 z^9 a^{-5} +6 z^8 a^{-2} +10 z^8 a^{-4} +7 z^8 a^{-6} +3 z^8+2 a z^7+5 z^7 a^{-1} +4 z^7 a^{-5} +7 z^7 a^{-7} +a^2 z^6-7 z^6 a^{-2} -13 z^6 a^{-4} -7 z^6 a^{-6} +4 z^6 a^{-8} -4 z^6-4 a z^5-19 z^5 a^{-1} -17 z^5 a^{-3} -14 z^5 a^{-5} -11 z^5 a^{-7} +z^5 a^{-9} -4 a^2 z^4-8 z^4 a^{-2} -5 z^4 a^{-4} -2 z^4 a^{-6} -6 z^4 a^{-8} -3 z^4+14 z^3 a^{-1} +16 z^3 a^{-3} +8 z^3 a^{-5} +5 z^3 a^{-7} -z^3 a^{-9} +6 a^2 z^2+9 z^2 a^{-2} +9 z^2 a^{-4} +4 z^2 a^{-6} +2 z^2 a^{-8} +8 z^2+4 a z-6 z a^{-3} -2 z a^{-5} -4 a^2-3 a^{-2} - a^{-4} - a^{-6} -6-2 a z^{-1} -2 a^{-1} z^{-1} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^{-2} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



