L11a407: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
 
No edit summary
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template "Link_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit!
<!-- --> <!--
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
-->
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. -->
<!-- <math>\text{Null}</math> -->
<!-- <math>\text{Null}</math> -->
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit!
<!-- Almost certainly, you want to edit [[Template:Link Page]], which actually produces this page.
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately.
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. -->
<!-- <math>\text{Null}</math> -->
{{Link Page|
{{Link Page|
n = 11 |
n = 11 |
Line 35: Line 44:
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
</tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 28, 2005, 22:58:49)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 407]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 407]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr>
Line 50: Line 59:
{11, -2, 3, -5, 4, -8, 7, -6, 9, -7, 8, -3}]</nowiki></pre></td></tr>
{11, -2, 3, -5, 4, -8, 7, -6, 9, -7, 8, -3}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Link[11, Alternating, 407]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 407]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a407_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[Link[11, Alternating, 407]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, Alternating, 407]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 407]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a407_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[7]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Link[11, Alternating, 407]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 407]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>ComplexInfinity</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 2 7 2 3 4 5 6
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Link[11, Alternating, 407]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>ComplexInfinity</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Link[11, Alternating, 407]], KnotSignature[Link[11, Alternating, 407]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Infinity, 2}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 407]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 2 7 2 3 4 5 6
-10 + q - -- + - + 16 q - 18 q + 19 q - 17 q + 13 q - 8 q +
-10 + q - -- + - + 16 q - 18 q + 19 q - 17 q + 13 q - 8 q +
2 q
2 q
Line 69: Line 70:
7 8
7 8
4 q - q</nowiki></pre></td></tr>
4 q - q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[11, Alternating, 407]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[11, Alternating, 407]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -10 -8 -6 6 3 2 4 6 8 12
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -10 -8 -6 6 3 2 4 6 8 12
4 + q + q + q + -- + -- + 7 q - q + 4 q - q + 2 q -
4 + q + q + q + -- + -- + 7 q - q + 4 q - q + 2 q -
4 2
4 2
Line 77: Line 78:
14 16 18 20 22 24
14 16 18 20 22 24
3 q + 4 q - q - q + 2 q - q</nowiki></pre></td></tr>
3 q + 4 q - q - q + 2 q - q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[11, Alternating, 407]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[11, Alternating, 407]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 2
-4 2 2 1 a 2 z 2 z z 2 2
-4 2 2 1 a 2 z 2 z z 2 2
-3 + a + 2 a - -- + ----- + -- - 4 z - -- + ---- - -- + a z -
-3 + a + 2 a - -- + ----- + -- - 4 z - -- + ---- - -- + a z -
Line 89: Line 90:
6 4 2 4 2
6 4 2 4 2
a a a a a</nowiki></pre></td></tr>
a a a a a</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[11, Alternating, 407]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[11, Alternating, 407]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
-6 -4 3 2 2 1 a 2 2 a 2 z 6 z
-6 -4 3 2 2 1 a 2 2 a 2 z 6 z
-6 - a - a - -- - 4 a + -- + ----- + -- - --- - --- - --- - --- +
-6 - a - a - -- - 4 a + -- + ----- + -- - --- - --- - --- - --- +
Line 125: Line 126:
4 2 5 3 a 4 2
4 2 5 3 a 4 2
a a a a a a</nowiki></pre></td></tr>
a a a a a a</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Link[11, Alternating, 407]], Vassiliev[3][Link[11, Alternating, 407]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 407]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, -1}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 1 2 5 2 5 5 q
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 407]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 1 2 5 2 5 5 q
11 q + 6 q + ----- + ----- + ----- + ----- + ---- + --- + --- +
11 q + 6 q + ----- + ----- + ----- + ----- + ---- + --- + --- +
7 4 5 4 5 3 3 2 2 q t t
7 4 5 4 5 3 3 2 2 q t t

Revision as of 11:52, 31 August 2005

L11a406.gif

L11a406

L11a408.gif

L11a408

L11a407.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a407 at Knotilus!


Link Presentations

[edit Notes on L11a407's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X22,14,11,13 X8,16,9,15 X14,8,15,7 X18,10,19,9 X20,18,21,17 X16,22,17,21 X10,20,5,19 X2536 X4,11,1,12
Gauss code {1, -10, 2, -11}, {10, -1, 5, -4, 6, -9}, {11, -2, 3, -5, 4, -8, 7, -6, 9, -7, 8, -3}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11a407 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) [math]\displaystyle{ \frac{2 t(1) t(3)^2 t(2)^2-4 t(3)^2 t(2)^2+t(1) t(2)^2-3 t(1) t(3) t(2)^2+4 t(3) t(2)^2-t(2)^2-3 t(1) t(3)^2 t(2)+4 t(3)^2 t(2)-4 t(1) t(2)+7 t(1) t(3) t(2)-7 t(3) t(2)+3 t(2)+t(1) t(3)^2-t(3)^2+4 t(1)-4 t(1) t(3)+3 t(3)-2}{\sqrt{t(1)} t(2) t(3)} }[/math] (db)
Jones polynomial [math]\displaystyle{ -q^8+4 q^7-8 q^6+13 q^5-17 q^4+19 q^3-18 q^2+16 q-10+7 q^{-1} -2 q^{-2} + q^{-3} }[/math] (db)
Signature 2 (db)
HOMFLY-PT polynomial [math]\displaystyle{ -z^4 a^{-6} -z^2 a^{-6} +z^6 a^{-4} +2 z^4 a^{-4} +2 z^2 a^{-4} + a^{-4} +z^6 a^{-2} +z^4 a^{-2} +a^2 z^2-z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} +2 a^2-2 z^4-4 z^2-2 z^{-2} -3 }[/math] (db)
Kauffman polynomial [math]\displaystyle{ z^{10} a^{-2} +z^{10} a^{-4} +2 z^9 a^{-1} +6 z^9 a^{-3} +4 z^9 a^{-5} +6 z^8 a^{-2} +10 z^8 a^{-4} +7 z^8 a^{-6} +3 z^8+2 a z^7+5 z^7 a^{-1} +4 z^7 a^{-5} +7 z^7 a^{-7} +a^2 z^6-7 z^6 a^{-2} -13 z^6 a^{-4} -7 z^6 a^{-6} +4 z^6 a^{-8} -4 z^6-4 a z^5-19 z^5 a^{-1} -17 z^5 a^{-3} -14 z^5 a^{-5} -11 z^5 a^{-7} +z^5 a^{-9} -4 a^2 z^4-8 z^4 a^{-2} -5 z^4 a^{-4} -2 z^4 a^{-6} -6 z^4 a^{-8} -3 z^4+14 z^3 a^{-1} +16 z^3 a^{-3} +8 z^3 a^{-5} +5 z^3 a^{-7} -z^3 a^{-9} +6 a^2 z^2+9 z^2 a^{-2} +9 z^2 a^{-4} +4 z^2 a^{-6} +2 z^2 a^{-8} +8 z^2+4 a z-6 z a^{-3} -2 z a^{-5} -4 a^2-3 a^{-2} - a^{-4} - a^{-6} -6-2 a z^{-1} -2 a^{-1} z^{-1} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^{-2} }[/math] (db)

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]).   
\ r
  \  
j \
-4-3-2-101234567χ
17           1-1
15          3 3
13         51 -4
11        83  5
9       95   -4
7      108    2
5     1011     1
3    68      -2
1   511       6
-1  25        -3
-3  5         5
-512          -1
-71           1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=1 }[/math] [math]\displaystyle{ i=3 }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{10} }[/math] [math]\displaystyle{ {\mathbb Z}^{10} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{10} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{9} }[/math] [math]\displaystyle{ {\mathbb Z}^{9} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a406.gif

L11a406

L11a408.gif

L11a408