L11a548: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
 
No edit summary
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template "Link_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit!
<!-- --> <!--
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
-->
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. -->
<!-- <math>\text{Null}</math> -->
<!-- <math>\text{Null}</math> -->
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit!
<!-- Almost certainly, you want to edit [[Template:Link Page]], which actually produces this page.
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately.
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. -->
<!-- <math>\text{Null}</math> -->
{{Link Page|
{{Link Page|
n = 11 |
n = 11 |
Line 35: Line 44:
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
</tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 28, 2005, 22:58:49)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 548]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 548]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr>
Line 50: Line 59:
{7, -6, 10, -9}, {11, -3, 8, -10, 9, -8}]</nowiki></pre></td></tr>
{7, -6, 10, -9}, {11, -3, 8, -10, 9, -8}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Link[11, Alternating, 548]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 548]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a548_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[Link[11, Alternating, 548]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, Alternating, 548]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 548]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a548_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[7]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>-2</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Link[11, Alternating, 548]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 548]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>ComplexInfinity</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -9 -8 6 6 16 15 21 15 15 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Link[11, Alternating, 548]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>ComplexInfinity</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Link[11, Alternating, 548]], KnotSignature[Link[11, Alternating, 548]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Infinity, -2}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 548]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -9 -8 6 6 16 15 21 15 15 2
-10 + q - q + -- - -- + -- - -- + -- - -- + -- + 5 q - q
-10 + q - q + -- - -- + -- - -- + -- - -- + -- + 5 q - q
7 6 5 4 3 2 q
7 6 5 4 3 2 q
q q q q q q</nowiki></pre></td></tr>
q q q q q q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[11, Alternating, 548]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[11, Alternating, 548]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -30 4 7 13 23 26 31 37 28 27 19
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -30 4 7 13 23 26 31 37 28 27 19
-1 + q + --- + --- + --- + --- + --- + --- + --- + --- + --- + --- +
-1 + q + --- + --- + --- + --- + --- + --- + --- + --- + --- + --- +
28 26 24 22 20 18 16 14 12 10
28 26 24 22 20 18 16 14 12 10
Line 76: Line 77:
8 6 2
8 6 2
q q q</nowiki></pre></td></tr>
q q q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[11, Alternating, 548]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[11, Alternating, 548]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 2
2 4 6 8 a 4 a 6 a 4 a a 4 a
2 4 6 8 a 4 a 6 a 4 a a 4 a
6 a - 16 a + 14 a - 4 a + -- - ---- + ---- - ---- + --- + ---- -
6 a - 16 a + 14 a - 4 a + -- - ---- + ---- - ---- + --- + ---- -
Line 91: Line 92:
2 4 4 4 2 6
2 4 4 4 2 6
2 a z - 4 a z + a z</nowiki></pre></td></tr>
2 a z - 4 a z + a z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[11, Alternating, 548]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[11, Alternating, 548]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8
2 4 6 8 10 a 4 a 6 a 4 a
2 4 6 8 10 a 4 a 6 a 4 a
-10 a - 25 a - 31 a - 25 a - 10 a - -- - ---- - ---- - ---- -
-10 a - 25 a - 31 a - 25 a - 10 a - -- - ---- - ---- - ---- -
Line 129: Line 130:
3 9 5 9 7 9 4 10 6 10
3 9 5 9 7 9 4 10 6 10
5 a z + 6 a z + a z + a z + a z</nowiki></pre></td></tr>
5 a z + 6 a z + a z + a z + a z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Link[11, Alternating, 548]], Vassiliev[3][Link[11, Alternating, 548]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 548]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 67}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11 9 1 1 1 5 1 1 5
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 548]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11 9 1 1 1 5 1 1 5
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
3 q 19 8 17 8 17 7 15 6 13 6 13 5 11 5
3 q 19 8 17 8 17 7 15 6 13 6 13 5 11 5

Revision as of 11:59, 31 August 2005

L11a547.gif

L11a547

L11n1.gif

L11n1

L11a548.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a548 at Knotilus!

Link L11a548.
A graph, L11a548.

Link Presentations

[edit Notes on L11a548's Link Presentations]

Planar diagram presentation X6172 X2536 X18,11,19,12 X10,3,11,4 X4,9,1,10 X14,7,15,8 X8,13,5,14 X22,20,17,19 X16,22,13,21 X20,16,21,15 X12,17,9,18
Gauss code {1, -2, 4, -5}, {2, -1, 6, -7}, {5, -4, 3, -11}, {7, -6, 10, -9}, {11, -3, 8, -10, 9, -8}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11a548 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) [math]\displaystyle{ \frac{-2 t(2) t(1)+2 t(2) t(3) t(1)-2 t(3) t(1)+t(2) t(4) t(1)-t(2) t(3) t(4) t(1)+2 t(3) t(4) t(1)-2 t(4) t(1)+2 t(2) t(5) t(1)-t(2) t(3) t(5) t(1)+t(3) t(5) t(1)-2 t(2) t(4) t(5) t(1)+t(2) t(3) t(4) t(5) t(1)-2 t(3) t(4) t(5) t(1)+3 t(4) t(5) t(1)-2 t(5) t(1)+2 t(1)+2 t(2)-3 t(2) t(3)+2 t(3)-t(2) t(4)+2 t(2) t(3) t(4)-2 t(3) t(4)+t(4)-2 t(2) t(5)+2 t(2) t(3) t(5)-t(3) t(5)+2 t(2) t(4) t(5)-2 t(2) t(3) t(4) t(5)+2 t(3) t(4) t(5)-2 t(4) t(5)+t(5)-1}{\sqrt{t(1)} \sqrt{t(2)} \sqrt{t(3)} \sqrt{t(4)} \sqrt{t(5)}} }[/math] (db)
Jones polynomial [math]\displaystyle{ q^{-9} - q^{-8} +6 q^{-7} -6 q^{-6} +16 q^{-5} -15 q^{-4} +21 q^{-3} -q^2-15 q^{-2} +5 q+15 q^{-1} -10 }[/math] (db)
Signature -2 (db)
HOMFLY-PT polynomial [math]\displaystyle{ a^{10} z^{-2} +a^{10} z^{-4} -7 a^8 z^{-2} -4 a^8 z^{-4} -4 a^8+6 z^2 a^6+15 a^6 z^{-2} +6 a^6 z^{-4} +14 a^6-4 z^4 a^4-10 z^2 a^4-13 a^4 z^{-2} -4 a^4 z^{-4} -16 a^4+z^6 a^2+2 z^4 a^2+4 z^2 a^2+4 a^2 z^{-2} +a^2 z^{-4} +6 a^2-z^4 }[/math] (db)
Kauffman polynomial [math]\displaystyle{ z^6 a^{10}-5 z^4 a^{10}+10 z^2 a^{10}+5 a^{10} z^{-2} -a^{10} z^{-4} -10 a^{10}+z^7 a^9-10 z^3 a^9+20 z a^9-15 a^9 z^{-1} +4 a^9 z^{-3} +z^8 a^8+4 z^6 a^8-20 z^4 a^8+30 z^2 a^8+14 a^8 z^{-2} -4 a^8 z^{-4} -25 a^8+z^9 a^7+3 z^7 a^7-30 z^3 a^7+55 z a^7-41 a^7 z^{-1} +12 a^7 z^{-3} +z^{10} a^6+z^8 a^6+9 z^6 a^6-31 z^4 a^6+40 z^2 a^6+18 a^6 z^{-2} -6 a^6 z^{-4} -31 a^6+6 z^9 a^5-8 z^7 a^5+11 z^5 a^5-30 z^3 a^5+55 z a^5-41 a^5 z^{-1} +12 a^5 z^{-3} +z^{10} a^4+10 z^8 a^4-14 z^6 a^4-11 z^4 a^4+30 z^2 a^4+14 a^4 z^{-2} -4 a^4 z^{-4} -25 a^4+5 z^9 a^3-5 z^5 a^3-10 z^3 a^3+20 z a^3-15 a^3 z^{-1} +4 a^3 z^{-3} +10 z^8 a^2-15 z^6 a^2+10 z^2 a^2+5 a^2 z^{-2} -a^2 z^{-4} -10 a^2+10 z^7 a-15 z^5 a+5 z^6-5 z^4+z^5 a^{-1} }[/math] (db)

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]).   
\ r
  \  
j \
-8-7-6-5-4-3-2-10123χ
5           1-1
3          4 4
1         61 -5
-1        94  5
-3       1111   0
-5      104    6
-7     511     6
-9    1110      1
-11   515       10
-13  11        0
-15  5         5
-1711          0
-191           1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-3 }[/math] [math]\displaystyle{ i=-1 }[/math]
[math]\displaystyle{ r=-8 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{15}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}^{11} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{10} }[/math] [math]\displaystyle{ {\mathbb Z}^{10} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{11} }[/math] [math]\displaystyle{ {\mathbb Z}^{11} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{9} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a547.gif

L11a547

L11n1.gif

L11n1