L10a34: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
| Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 10 | |
n = 10 | |
||
t = a | |
t = <nowiki>a</nowiki> | |
||
k = 34 | |
k = 34 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,2,-10:9,-1,3,-6,5,-8,7,-2,10,-7,8,-3,4,-5,6,-4/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,2,-10:9,-1,3,-6,5,-8,7,-2,10,-7,8,-3,4,-5,6,-4/goTop.html | |
||
| Line 43: | Line 43: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[10, Alternating, 34]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
| ⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>10</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[10, Alternating, 34]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 1, 7, 2], X[12, 4, 13, 3], X[16, 8, 17, 7], X[20, 18, 5, 17], |
|||
X[18, 9, 19, 10], X[8, 19, 9, 20], X[14, 12, 15, 11], |
X[18, 9, 19, 10], X[8, 19, 9, 20], X[14, 12, 15, 11], |
||
X[10, 16, 11, 15], X[2, 5, 3, 6], X[4, 14, 1, 13]]</nowiki></ |
X[10, 16, 11, 15], X[2, 5, 3, 6], X[4, 14, 1, 13]]</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
| ⚫ | |||
4, -5, 6, -4}]</nowiki></ |
4, -5, 6, -4}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[10, Alternating, 34]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L10a34_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
| ⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[10, Alternating, 34]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L10a34_ML.gif]]</td></tr><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>1</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
| ⚫ | |||
-q + ---- - ---- + ------- - 11 Sqrt[q] + 12 q - 12 q + |
-q + ---- - ---- + ------- - 11 Sqrt[q] + 12 q - 12 q + |
||
5/2 3/2 Sqrt[q] |
5/2 3/2 Sqrt[q] |
||
| Line 68: | Line 104: | ||
7/2 9/2 11/2 13/2 |
7/2 9/2 11/2 13/2 |
||
9 q - 7 q + 4 q - q</nowiki></ |
9 q - 7 q + 4 q - q</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
| ⚫ | |||
2 + q + q + -- - -- - 2 q + 2 q + q + q + 3 q - 2 q + |
2 + q + q + -- - -- - 2 q + 2 q + q + q + 3 q - 2 q + |
||
6 2 |
6 2 |
||
| Line 76: | Line 117: | ||
14 18 20 |
14 18 20 |
||
2 q - 2 q + q</nowiki></ |
2 q - 2 q + q</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
| ⚫ | |||
1 2 2 a a 2 z 3 z z z 3 |
1 2 2 a a 2 z 3 z z z 3 |
||
-(----) + --- - --- + -- + --- - 3 a z + a z - -- + -- + -- - 2 a z + |
-(----) + --- - --- + -- + --- - 3 a z + a z - -- + -- + -- - 2 a z + |
||
| Line 88: | Line 134: | ||
-- + -- |
-- + -- |
||
3 a |
3 a |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
| ⚫ | |||
1 2 2 a a z 6 z 3 2 z |
1 2 2 a a z 6 z 3 2 z |
||
1 + ---- + --- + --- + -- - -- - --- - 8 a z - 3 a z - 2 z - -- - |
1 + ---- + --- + --- + -- - -- - --- - 8 a z - 3 a z - 2 z - -- - |
||
| Line 118: | Line 169: | ||
---- - 2 a z - 2 z - ---- - ---- - -- - -- |
---- - 2 a z - 2 z - ---- - ---- - -- - -- |
||
a 4 2 3 a |
a 4 2 3 a |
||
a a a</nowiki></ |
a a a</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
| ⚫ | |||
7 + 6 q + ----- + ----- + ----- + ----- + ----- + - + ---- + 7 q t + |
7 + 6 q + ----- + ----- + ----- + ----- + ----- + - + ---- + 7 q t + |
||
8 4 6 3 4 3 4 2 2 2 t 2 |
8 4 6 3 4 3 4 2 2 2 t 2 |
||
| Line 129: | Line 185: | ||
10 5 12 5 14 6 |
10 5 12 5 14 6 |
||
q t + 3 q t + q t</nowiki></ |
q t + 3 q t + q t</nowiki></code></td></tr> |
||
</table> }} |
|||
Revision as of 17:29, 1 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a34's Link Presentations]
| Planar diagram presentation | X6172 X12,4,13,3 X16,8,17,7 X20,18,5,17 X18,9,19,10 X8,19,9,20 X14,12,15,11 X10,16,11,15 X2536 X4,14,1,13 |
| Gauss code | {1, -9, 2, -10}, {9, -1, 3, -6, 5, -8, 7, -2, 10, -7, 8, -3, 4, -5, 6, -4} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(t(1)-1) (t(2)-2) (t(2)-1) (2 t(2)-1)}{\sqrt{t(1)} t(2)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -7 q^{9/2}+9 q^{7/2}-\frac{1}{q^{7/2}}-12 q^{5/2}+\frac{2}{q^{5/2}}+12 q^{3/2}-\frac{5}{q^{3/2}}-q^{13/2}+4 q^{11/2}-11 \sqrt{q}+\frac{8}{\sqrt{q}} }[/math] (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^3 a^{-5} +z^5 a^{-3} +z^3 a^{-3} +a^3 z+a^3 z^{-1} - a^{-3} z^{-1} +z^5 a^{-1} -2 a z^3+z^3 a^{-1} -3 a z+2 z a^{-1} -2 a z^{-1} +2 a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^9 a^{-1} -z^9 a^{-3} -6 z^8 a^{-2} -4 z^8 a^{-4} -2 z^8-2 a z^7-4 z^7 a^{-1} -8 z^7 a^{-3} -6 z^7 a^{-5} -2 a^2 z^6+8 z^6 a^{-2} +3 z^6 a^{-4} -4 z^6 a^{-6} -z^6-a^3 z^5-a z^5+5 z^5 a^{-1} +18 z^5 a^{-3} +12 z^5 a^{-5} -z^5 a^{-7} +4 a^2 z^4-3 z^4 a^{-2} +4 z^4 a^{-4} +7 z^4 a^{-6} +4 z^4+3 a^3 z^3+9 a z^3+2 z^3 a^{-1} -10 z^3 a^{-3} -5 z^3 a^{-5} +z^3 a^{-7} -2 a^2 z^2-z^2 a^{-2} -2 z^2 a^{-4} -z^2 a^{-6} -2 z^2-3 a^3 z-8 a z-6 z a^{-1} -z a^{-3} +1+a^3 z^{-1} +2 a z^{-1} +2 a^{-1} z^{-1} + a^{-3} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



