L11a371: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
| Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = a | |
t = <nowiki>a</nowiki> | |
||
k = 371 | |
k = 371 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-5,2,-6,4,-7,8,-11,9,-10:5,-1,3,-2,6,-4,10,-9,11,-8,7,-3/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-5,2,-6,4,-7,8,-11,9,-10:5,-1,3,-2,6,-4,10,-9,11,-8,7,-3/goTop.html | |
||
| Line 44: | Line 44: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[11, Alternating, 371]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
| ⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[11, Alternating, 371]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[12, 1, 13, 2], X[14, 4, 15, 3], X[22, 14, 11, 13], |
|||
X[16, 6, 17, 5], X[2, 11, 3, 12], X[4, 16, 5, 15], X[6, 22, 7, 21], |
X[16, 6, 17, 5], X[2, 11, 3, 12], X[4, 16, 5, 15], X[6, 22, 7, 21], |
||
X[20, 8, 21, 7], X[18, 10, 19, 9], X[10, 18, 1, 17], X[8, 20, 9, 19]]</nowiki></ |
X[20, 8, 21, 7], X[18, 10, 19, 9], X[10, 18, 1, 17], X[8, 20, 9, 19]]</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
| ⚫ | |||
{5, -1, 3, -2, 6, -4, 10, -9, 11, -8, 7, -3}]</nowiki></ |
{5, -1, 3, -2, 6, -4, 10, -9, 11, -8, 7, -3}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 371]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a371_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
| ⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 371]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L11a371_ML.gif]]</td></tr><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
| ⚫ | |||
-(-------) + 2 Sqrt[q] - 4 q + 6 q - 8 q + 9 q - 9 q + |
-(-------) + 2 Sqrt[q] - 4 q + 6 q - 8 q + 9 q - 9 q + |
||
Sqrt[q] |
Sqrt[q] |
||
13/2 15/2 17/2 19/2 21/2 |
13/2 15/2 17/2 19/2 21/2 |
||
7 q - 6 q + 3 q - 2 q + q</nowiki></ |
7 q - 6 q + 3 q - 2 q + q</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
| ⚫ | |||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Link[11, Alternating, 371]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
| ⚫ | |||
| ⚫ | |||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
| ⚫ | |||
1 1 2 z 3 z 2 z 2 z z 3 z z 2 z z |
1 1 2 z 3 z 2 z 2 z z 3 z z 2 z z |
||
-(----) + ---- + --- - --- + --- + --- + -- - ---- - -- - ---- + -- - |
-(----) + ---- + --- - --- + --- + --- + -- - ---- - -- - ---- + -- - |
||
| Line 83: | Line 129: | ||
-- - -- - -- |
-- - -- - -- |
||
7 5 3 |
7 5 3 |
||
a a a</nowiki></ |
a a a</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
| ⚫ | |||
-6 1 1 3 z 3 z 8 z 6 z 2 z 3 z z 2 z |
-6 1 1 3 z 3 z 8 z 6 z 2 z 3 z z 2 z |
||
-a + ---- + ---- + --- + --- - --- - --- - --- - ---- - --- + ---- + |
-a + ---- + ---- + --- + --- - --- - --- - --- - ---- - --- + ---- + |
||
| Line 119: | Line 170: | ||
--- |
--- |
||
6 |
6 |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 |
|||
2 4 1 1 q 4 6 6 2 8 2 |
2 4 1 1 q 4 6 6 2 8 2 |
||
3 q + 2 q + ----- + - + -- + 4 q t + 2 q t + 4 q t + 4 q t + |
3 q + 2 q + ----- + - + -- + 4 q t + 2 q t + 4 q t + 4 q t + |
||
| Line 131: | Line 187: | ||
14 6 16 6 16 7 18 7 18 8 20 8 22 9 |
14 6 16 6 16 7 18 7 18 8 20 8 22 9 |
||
3 q t + 4 q t + q t + 2 q t + q t + q t + q t</nowiki></ |
3 q t + 4 q t + q t + 2 q t + q t + q t + q t</nowiki></code></td></tr> |
||
</table> }} |
|||
Revision as of 17:36, 1 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a371's Link Presentations]
| Planar diagram presentation | X12,1,13,2 X14,4,15,3 X22,14,11,13 X16,6,17,5 X2,11,3,12 X4,16,5,15 X6,22,7,21 X20,8,21,7 X18,10,19,9 X10,18,1,17 X8,20,9,19 |
| Gauss code | {1, -5, 2, -6, 4, -7, 8, -11, 9, -10}, {5, -1, 3, -2, 6, -4, 10, -9, 11, -8, 7, -3} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{u^4 v^2-u^4 v+u^3 v^3-3 u^3 v^2+2 u^3 v-u^3+u^2 v^4-3 u^2 v^3+3 u^2 v^2-3 u^2 v+u^2-u v^4+2 u v^3-3 u v^2+u v-v^3+v^2}{u^2 v^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ 9 q^{9/2}-8 q^{7/2}+6 q^{5/2}-4 q^{3/2}+q^{21/2}-2 q^{19/2}+3 q^{17/2}-6 q^{15/2}+7 q^{13/2}-9 q^{11/2}+2 \sqrt{q}-\frac{1}{\sqrt{q}} }[/math] (db) |
| Signature | 3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^5 a^{-3} -z^5 a^{-5} -z^5 a^{-7} +z^3 a^{-1} -2 z^3 a^{-3} -z^3 a^{-5} -3 z^3 a^{-7} +z^3 a^{-9} +2 z a^{-1} +2 z a^{-5} -3 z a^{-7} +2 z a^{-9} + a^{-5} z^{-1} - a^{-7} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^6 a^{-12} -4 z^4 a^{-12} +3 z^2 a^{-12} +2 z^7 a^{-11} -8 z^5 a^{-11} +8 z^3 a^{-11} -3 z a^{-11} +2 z^8 a^{-10} -6 z^6 a^{-10} +2 z^4 a^{-10} +z^2 a^{-10} +2 z^9 a^{-9} -7 z^7 a^{-9} +7 z^5 a^{-9} -z^3 a^{-9} -3 z a^{-9} +z^{10} a^{-8} -2 z^8 a^{-8} -z^6 a^{-8} +5 z^4 a^{-8} -2 z^2 a^{-8} +4 z^9 a^{-7} -18 z^7 a^{-7} +33 z^5 a^{-7} -23 z^3 a^{-7} +8 z a^{-7} - a^{-7} z^{-1} +z^{10} a^{-6} -2 z^8 a^{-6} +8 z^4 a^{-6} -5 z^2 a^{-6} + a^{-6} +2 z^9 a^{-5} -7 z^7 a^{-5} +14 z^5 a^{-5} -12 z^3 a^{-5} +6 z a^{-5} - a^{-5} z^{-1} +2 z^8 a^{-4} -4 z^6 a^{-4} +4 z^4 a^{-4} -3 z^2 a^{-4} +2 z^7 a^{-3} -3 z^5 a^{-3} -z^3 a^{-3} +2 z^6 a^{-2} -5 z^4 a^{-2} +2 z^2 a^{-2} +z^5 a^{-1} -3 z^3 a^{-1} +2 z a^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



