L11n256: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = n | |
t = <nowiki>n</nowiki> | |
||
k = 256 | |
k = 256 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,-2,11:10,-1,-9,8:-11,2,3,-6,5,9,-8,-3,7,-4,6,-5,4,-7/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,-2,11:10,-1,-9,8:-11,2,3,-6,5,9,-8,-3,7,-4,6,-5,4,-7/goTop.html | |
||
Line 43: | Line 43: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[11, NonAlternating, 256]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 1, 7, 2], X[3, 11, 4, 10], X[16, 12, 17, 11], |
|||
X[18, 22, 19, 21], X[20, 14, 21, 13], X[12, 20, 13, 19], |
X[18, 22, 19, 21], X[20, 14, 21, 13], X[12, 20, 13, 19], |
||
Line 55: | Line 70: | ||
X[22, 18, 9, 17], X[15, 8, 16, 5], X[7, 14, 8, 15], X[2, 5, 3, 6], |
X[22, 18, 9, 17], X[15, 8, 16, 5], X[7, 14, 8, 15], X[2, 5, 3, 6], |
||
X[9, 1, 10, 4]]</nowiki></ |
X[9, 1, 10, 4]]</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
⚫ | |||
{-11, 2, 3, -6, 5, 9, -8, -3, 7, -4, 6, -5, 4, -7}]</nowiki></ |
{-11, 2, 3, -6, 5, 9, -8, -3, 7, -4, 6, -5, 4, -7}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 256]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11n256_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 256]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L11n256_ML.gif]]</td></tr><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
⚫ | |||
-2 + q - q + - + 4 q - q + 2 q - q - q + q - q |
-2 + q - q + - + 4 q - q + 2 q - q - q + q - q |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
⚫ | |||
6 + q + q + -- + -- + -- + 6 q + 6 q + 6 q + 2 q + q - |
6 + q + q + -- + -- + -- + 6 q + 6 q + 6 q + 2 q + q - |
||
6 4 2 |
6 4 2 |
||
Line 74: | Line 115: | ||
12 14 16 18 20 22 |
12 14 16 18 20 22 |
||
3 q - 3 q - 2 q - 2 q - q - q</nowiki></ |
3 q - 3 q - 2 q - 2 q - q - q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
⚫ | |||
2 6 3 2 -2 1 3 2 a 2 |
2 6 3 2 -2 1 3 2 a 2 |
||
-3 - -- + -- - -- + 2 a - z - ----- + ----- - ----- + -- - 3 z - |
-3 - -- + -- - -- + 2 a - z - ----- + ----- - ----- + -- - 3 z - |
||
Line 86: | Line 132: | ||
-- + ---- - ---- + a z - z + -- - -- |
-- + ---- - ---- + a z - z + -- - -- |
||
6 4 2 4 2 |
6 4 2 4 2 |
||
a a a a a</nowiki></ |
a a a a a</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Link[11, NonAlternating, 256]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
⚫ | |||
-6 5 4 2 -2 1 3 2 a 2 |
-6 5 4 2 -2 1 3 2 a 2 |
||
-3 + a + -- + -- - 4 a + z - ----- - ----- - ----- + -- + ---- + |
-3 + a + -- + -- - 4 a + z - ----- - ----- - ----- + -- + ---- + |
||
Line 121: | Line 172: | ||
---- + a z + z + -- + -- + -- |
---- + a z + z + -- + -- + -- |
||
a 6 4 2 |
a 6 4 2 |
||
a a a</nowiki></ |
a a a</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
⚫ | |||
- + 5 q + 3 q + ----- + ----- + ----- + ----- + ---- + --- + --- + |
- + 5 q + 3 q + ----- + ----- + ----- + ----- + ---- + --- + --- + |
||
q 7 4 5 4 5 3 3 2 2 q t t |
q 7 4 5 4 5 3 3 2 2 q t t |
||
Line 132: | Line 188: | ||
9 3 7 4 9 4 11 5 11 6 15 7 |
9 3 7 4 9 4 11 5 11 6 15 7 |
||
3 q t + q t + q t + q t + q t + q t</nowiki></ |
3 q t + q t + q t + q t + q t + q t</nowiki></code></td></tr> |
||
</table> }} |
Revision as of 17:41, 1 September 2005
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n256's Link Presentations]
Planar diagram presentation | X6172 X3,11,4,10 X16,12,17,11 X18,22,19,21 X20,14,21,13 X12,20,13,19 X22,18,9,17 X15,8,16,5 X7,14,8,15 X2536 X9,1,10,4 |
Gauss code | {1, -10, -2, 11}, {10, -1, -9, 8}, {-11, 2, 3, -6, 5, 9, -8, -3, 7, -4, 6, -5, 4, -7} |
A Braid Representative | {{{braid_table}}} |
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in , , , ...) | (db) |
Jones polynomial | (db) |
Signature | 2 (db) |
HOMFLY-PT polynomial | (db) |
Kauffman polynomial | (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|