L11a118: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
| Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = a | |
t = <nowiki>a</nowiki> | |
||
k = 118 | |
k = 118 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:10,-1,6,-5,3,-8,4,-7,11,-2,8,-3,9,-6,7,-4,5,-9/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:10,-1,6,-5,3,-8,4,-7,11,-2,8,-3,9,-6,7,-4,5,-9/goTop.html | |
||
| Line 44: | Line 44: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[11, Alternating, 118]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
| ⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[11, Alternating, 118]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 1, 7, 2], X[14, 3, 15, 4], X[16, 10, 17, 9], X[20, 11, 21, 12], |
|||
X[8, 21, 9, 22], X[18, 7, 19, 8], X[12, 19, 13, 20], |
X[8, 21, 9, 22], X[18, 7, 19, 8], X[12, 19, 13, 20], |
||
X[10, 16, 11, 15], X[22, 17, 5, 18], X[2, 5, 3, 6], X[4, 13, 1, 14]]</nowiki></ |
X[10, 16, 11, 15], X[22, 17, 5, 18], X[2, 5, 3, 6], X[4, 13, 1, 14]]</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
| ⚫ | |||
-3, 9, -6, 7, -4, 5, -9}]</nowiki></ |
-3, 9, -6, 7, -4, 5, -9}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 118]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a118_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
| ⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 118]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L11a118_ML.gif]]</td></tr><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
| ⚫ | |||
q - ----- + ----- - ----- + ----- - ----- + ---- - ---- + ---- - |
q - ----- + ----- - ----- + ----- - ----- + ---- - ---- + ---- - |
||
19/2 17/2 15/2 13/2 11/2 9/2 7/2 5/2 |
19/2 17/2 15/2 13/2 11/2 9/2 7/2 5/2 |
||
| Line 71: | Line 107: | ||
---- + ------- - Sqrt[q] |
---- + ------- - Sqrt[q] |
||
3/2 Sqrt[q] |
3/2 Sqrt[q] |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
| ⚫ | |||
-2 - q - --- + q - --- + --- + --- - --- + --- - --- + q + |
-2 - q - --- + q - --- + --- + --- - --- + --- - --- + q + |
||
32 26 24 18 16 14 12 |
32 26 24 18 16 14 12 |
||
| Line 81: | Line 122: | ||
-- - -- + -- + q |
-- - -- + -- + q |
||
8 6 4 |
8 6 4 |
||
q q q</nowiki></ |
q q q</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 7 9 11 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 5 7 9 11 |
|||
a 2 a 3 a 3 a a 3 5 7 9 |
a 2 a 3 a 3 a a 3 5 7 9 |
||
-(--) + ---- - ---- + ---- - --- - 4 a z + 6 a z - 8 a z + 4 a z - |
-(--) + ---- - ---- + ---- - --- - 4 a z + 6 a z - 8 a z + 4 a z - |
||
| Line 89: | Line 135: | ||
3 3 3 5 3 7 3 3 5 5 5 |
3 3 3 5 3 7 3 3 5 5 5 |
||
a z - 2 a z + 6 a z - 6 a z + a z + 3 a z</nowiki></ |
a z - 2 a z + 6 a z - 6 a z + a z + 3 a z</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
| ⚫ | |||
6 10 12 a 2 a 3 a 3 a a 3 |
6 10 12 a 2 a 3 a 3 a a 3 |
||
-2 a + 2 a + a - -- - ---- - ---- - ---- - --- + 5 a z + |
-2 a + 2 a + a - -- - ---- - ---- - ---- - --- + 5 a z + |
||
| Line 118: | Line 169: | ||
7 9 9 9 6 10 8 10 |
7 9 9 9 6 10 8 10 |
||
13 a z - 5 a z - 2 a z - 2 a z</nowiki></ |
13 a z - 5 a z - 2 a z - 2 a z</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
| ⚫ | |||
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
||
4 2 22 9 20 8 18 8 18 7 16 7 16 6 |
4 2 22 9 20 8 18 8 18 7 16 7 16 6 |
||
| Line 133: | Line 189: | ||
----- + ---- + ---- + 3 t + -- + q t |
----- + ---- + ---- + 3 t + -- + q t |
||
6 2 6 4 2 |
6 2 6 4 2 |
||
q t q t q t q</nowiki></ |
q t q t q t q</nowiki></code></td></tr> |
||
</table> }} |
|||
Revision as of 17:43, 1 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a118's Link Presentations]
| Planar diagram presentation | X6172 X14,3,15,4 X16,10,17,9 X20,11,21,12 X8,21,9,22 X18,7,19,8 X12,19,13,20 X10,16,11,15 X22,17,5,18 X2536 X4,13,1,14 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 6, -5, 3, -8, 4, -7, 11, -2, 8, -3, 9, -6, 7, -4, 5, -9} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3 u v^4-12 u v^3+14 u v^2-7 u v+u+v^5-7 v^4+14 v^3-12 v^2+3 v}{\sqrt{u} v^{5/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\sqrt{q}+\frac{4}{\sqrt{q}}-\frac{10}{q^{3/2}}+\frac{16}{q^{5/2}}-\frac{22}{q^{7/2}}+\frac{24}{q^{9/2}}-\frac{24}{q^{11/2}}+\frac{20}{q^{13/2}}-\frac{15}{q^{15/2}}+\frac{8}{q^{17/2}}-\frac{3}{q^{19/2}}+\frac{1}{q^{21/2}}} (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^{11} z^{-1} +4 a^9 z+3 a^9 z^{-1} -6 a^7 z^3-8 a^7 z-3 a^7 z^{-1} +3 a^5 z^5+6 a^5 z^3+6 a^5 z+2 a^5 z^{-1} +a^3 z^5-2 a^3 z^3-4 a^3 z-a^3 z^{-1} -a z^3} (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6 a^{12}+3 z^4 a^{12}-3 z^2 a^{12}+a^{12}-3 z^7 a^{11}+7 z^5 a^{11}-6 z^3 a^{11}+3 z a^{11}-a^{11} z^{-1} -5 z^8 a^{10}+8 z^6 a^{10}-z^4 a^{10}-4 z^2 a^{10}+2 a^{10}-5 z^9 a^9+2 z^7 a^9+13 z^5 a^9-17 z^3 a^9+12 z a^9-3 a^9 z^{-1} -2 z^{10} a^8-13 z^8 a^8+36 z^6 a^8-28 z^4 a^8+9 z^2 a^8-13 z^9 a^7+15 z^7 a^7+13 z^5 a^7-26 z^3 a^7+15 z a^7-3 a^7 z^{-1} -2 z^{10} a^6-20 z^8 a^6+52 z^6 a^6-44 z^4 a^6+15 z^2 a^6-2 a^6-8 z^9 a^5+z^7 a^5+22 z^5 a^5-26 z^3 a^5+11 z a^5-2 a^5 z^{-1} -12 z^8 a^4+21 z^6 a^4-16 z^4 a^4+5 z^2 a^4-9 z^7 a^3+14 z^5 a^3-10 z^3 a^3+5 z a^3-a^3 z^{-1} -4 z^6 a^2+4 z^4 a^2-z^5 a+z^3 a} (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



