L10a112: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit!
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. -->
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. -->
<!-- <math>\text{Null}</math> -->
<!-- -->
<!-- <math>\text{Null}</math> -->
<!-- -->
<!-- WARNING! WARNING! WARNING!
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit!
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit!
Line 10: Line 10:
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately.
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately.
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. -->
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. -->
<!-- <math>\text{Null}</math> -->
<!-- -->
{{Link Page|
{{Link Page|
n = 10 |
n = 10 |
t = a |
t = <nowiki>a</nowiki> |
k = 112 |
k = 112 |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-8,3,-7,4,-2,5,-6:6,-1,7,-3,9,-5,10,-4,8,-9/goTop.html |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-8,3,-7,4,-2,5,-6:6,-1,7,-3,9,-5,10,-4,8,-9/goTop.html |
Line 43: Line 43:
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
</tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 28, 2005, 22:58:49)...</td></tr>
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[10, Alternating, 112]]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Length[Skeleton[Link[10, Alternating, 112]]]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[10, Alternating, 112]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Link[10, Alternating, 112]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[12, 1, 13, 2], X[8, 4, 9, 3], X[14, 6, 15, 5], X[18, 7, 19, 8],
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>10</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[10, Alternating, 112]]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Link[10, Alternating, 112]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[12, 1, 13, 2], X[8, 4, 9, 3], X[14, 6, 15, 5], X[18, 7, 19, 8],
X[16, 10, 17, 9], X[10, 11, 1, 12], X[6, 14, 7, 13], X[4, 19, 5, 20],
X[16, 10, 17, 9], X[10, 11, 1, 12], X[6, 14, 7, 13], X[4, 19, 5, 20],
X[20, 15, 11, 16], X[2, 18, 3, 17]]</nowiki></pre></td></tr>
X[20, 15, 11, 16], X[2, 18, 3, 17]]</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Link[10, Alternating, 112]]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[{1, -10, 2, -8, 3, -7, 4, -2, 5, -6},
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Link[10, Alternating, 112]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[{1, -10, 2, -8, 3, -7, 4, -2, 5, -6},
{6, -1, 7, -3, 9, -5, 10, -4, 8, -9}]</nowiki></pre></td></tr>
{6, -1, 7, -3, 9, -5, 10, -4, 8, -9}]</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[10, Alternating, 112]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L10a112_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[10, Alternating, 112]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>-1</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[10, Alternating, 112]][q]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[10, Alternating, 112]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:L10a112_ML.gif]]</td></tr><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(11/2) 4 9 14 16 18 3/2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>KnotSignature[Link[10, Alternating, 112]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-1</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>J=Jones[Link[10, Alternating, 112]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -(11/2) 4 9 14 16 18 3/2
q - ---- + ---- - ---- + ---- - ------- + 16 Sqrt[q] - 13 q +
q - ---- + ---- - ---- + ---- - ------- + 16 Sqrt[q] - 13 q +
9/2 7/2 5/2 3/2 Sqrt[q]
9/2 7/2 5/2 3/2 Sqrt[q]
Line 68: Line 104:
5/2 7/2 9/2
5/2 7/2 9/2
8 q - 4 q + q</nowiki></pre></td></tr>
8 q - 4 q + q</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[10, Alternating, 112]][q]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -16 2 3 -10 3 2 5 2 2 4 6
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Link[10, Alternating, 112]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -16 2 3 -10 3 2 5 2 2 4 6
3 - q + --- - --- + q + -- - -- + -- - -- + q - q + 4 q -
3 - q + --- - --- + q + -- - -- + -- - -- + q - q + 4 q -
14 12 8 6 4 2
14 12 8 6 4 2
Line 76: Line 117:
8 10 12 14
8 10 12 14
2 q + q + q - q</nowiki></pre></td></tr>
2 q + q + q - q</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[10, Alternating, 112]][a, z]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Link[10, Alternating, 112]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 3
1 a z 4 z 3 z 5 z 3 3 3
1 a z 4 z 3 z 5 z 3 3 3
-(---) + - + -- - --- + 5 a z - 2 a z + -- - ---- + 7 a z - 2 a z -
-(---) + - + -- - --- + 5 a z - 2 a z + -- - ---- + 7 a z - 2 a z -
Line 87: Line 133:
2 z 5 3 5 7
2 z 5 3 5 7
---- + 4 a z - a z + a z
---- + 4 a z - a z + a z
a</nowiki></pre></td></tr>
a</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[10, Alternating, 112]][a, z]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Link[10, Alternating, 112]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2
1 a 2 z 8 z 3 z z 2 2
1 a 2 z 8 z 3 z z 2 2
1 - --- - - + --- + --- + 10 a z + 4 a z - -- - -- - 3 a z -
1 - --- - - + --- + --- + 10 a z + 4 a z - -- - -- - 3 a z -
Line 117: Line 168:
---- - 16 a z - 13 a z - 16 z - ---- - 10 a z - ---- - 3 a z
---- - 16 a z - 13 a z - 16 z - ---- - 10 a z - ---- - 3 a z
a 2 a
a 2 a
a</nowiki></pre></td></tr>
a</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[10, Alternating, 112]][q, t]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 10 1 3 1 6 3 8 6
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Link[10, Alternating, 112]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 10 1 3 1 6 3 8 6
10 + -- + ------ + ------ + ----- + ----- + ----- + ----- + ----- +
10 + -- + ------ + ------ + ----- + ----- + ----- + ----- + ----- +
2 12 5 10 4 8 4 8 3 6 3 6 2 4 2
2 12 5 10 4 8 4 8 3 6 3 6 2 4 2
Line 130: Line 186:
6 4 8 4 10 5
6 4 8 4 10 5
q t + 3 q t + q t</nowiki></pre></td></tr>
q t + 3 q t + q t</nowiki></code></td></tr>
</table> }}
</table> }}

Revision as of 17:43, 1 September 2005

L10a111.gif

L10a111

L10a113.gif

L10a113

L10a112.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a112 at Knotilus!


Link Presentations

[edit Notes on L10a112's Link Presentations]

Planar diagram presentation X12,1,13,2 X8493 X14,6,15,5 X18,7,19,8 X16,10,17,9 X10,11,1,12 X6,14,7,13 X4,19,5,20 X20,15,11,16 X2,18,3,17
Gauss code {1, -10, 2, -8, 3, -7, 4, -2, 5, -6}, {6, -1, 7, -3, 9, -5, 10, -4, 8, -9}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L10a112 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -1 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-5-4-3-2-1012345χ
10          1-1
8         3 3
6        51 -4
4       83  5
2      85   -3
0     108    2
-2    810     2
-4   68      -2
-6  38       5
-8 16        -5
-10 3         3
-121          -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a111.gif

L10a111

L10a113.gif

L10a113