L11n248: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
| Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = n | |
t = <nowiki>n</nowiki> | |
||
k = 248 | |
k = 248 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-8,3,-7,4,-2,5,-6:6,-1,7,-3,-9,11,8,-4,10,-5,-11,9/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-8,3,-7,4,-2,5,-6:6,-1,7,-3,-9,11,8,-4,10,-5,-11,9/goTop.html | |
||
| Line 42: | Line 42: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[11, NonAlternating, 248]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
| ⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[12, 1, 13, 2], X[8, 4, 9, 3], X[14, 6, 15, 5], X[18, 8, 19, 7], |
|||
X[20, 9, 21, 10], X[10, 11, 1, 12], X[6, 14, 7, 13], X[4, 18, 5, 17], |
X[20, 9, 21, 10], X[10, 11, 1, 12], X[6, 14, 7, 13], X[4, 18, 5, 17], |
||
X[15, 11, 16, 22], X[2, 19, 3, 20], X[21, 17, 22, 16]]</nowiki></ |
X[15, 11, 16, 22], X[2, 19, 3, 20], X[21, 17, 22, 16]]</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
| ⚫ | |||
{6, -1, 7, -3, -9, 11, 8, -4, 10, -5, -11, 9}]</nowiki></ |
{6, -1, 7, -3, -9, 11, 8, -4, 10, -5, -11, 9}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 248]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11n248_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
| ⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 248]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L11n248_ML.gif]]</td></tr><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>1</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
| ⚫ | |||
-q + ---- - ---- + ------- - 15 Sqrt[q] + 15 q - 14 q + |
-q + ---- - ---- + ------- - 15 Sqrt[q] + 15 q - 14 q + |
||
5/2 3/2 Sqrt[q] |
5/2 3/2 Sqrt[q] |
||
| Line 67: | Line 103: | ||
7/2 9/2 11/2 |
7/2 9/2 11/2 |
||
10 q - 6 q + 2 q</nowiki></ |
10 q - 6 q + 2 q</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
| ⚫ | |||
5 + q - -- + -- - 2 q + 4 q - 2 q + q + 2 q - 2 q + 3 q - |
5 + q - -- + -- - 2 q + 4 q - 2 q + q + 2 q - 2 q + 3 q - |
||
8 6 |
8 6 |
||
| Line 75: | Line 116: | ||
16 18 |
16 18 |
||
q - q</nowiki></ |
q - q</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
| ⚫ | |||
1 a z 3 z z 6 z 3 z 4 z 5 |
1 a z 3 z z 6 z 3 z 4 z 5 |
||
-(---) + - + -- - --- + 2 a z + -- - ---- + 2 a z + -- - ---- + a z - |
-(---) + - + -- - --- + 2 a z + -- - ---- + 2 a z + -- - ---- + a z - |
||
| Line 86: | Line 132: | ||
z |
z |
||
-- |
-- |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Link[11, NonAlternating, 248]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
| ⚫ | |||
1 a 2 z 6 z 2 3 z z 2 z 2 2 |
1 a 2 z 6 z 2 3 z z 2 z 2 2 |
||
1 - --- - - - --- + --- + 4 a z - z + ---- + -- - ---- - a z + |
1 - --- - - - --- + --- + 4 a z - z + ---- + -- - ---- - a z + |
||
| Line 110: | Line 161: | ||
-- - ---- - ----- - 8 a z - 7 z - ---- - ----- - ---- - ---- |
-- - ---- - ----- - 8 a z - 7 z - ---- - ----- - ---- - ---- |
||
5 3 a 4 2 3 a |
5 3 a 4 2 3 a |
||
a a a a a</nowiki></ |
a a a a a</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
| ⚫ | |||
9 + 8 q + ----- + ----- + ----- + ----- + ----- + - + ---- + 8 q t + |
9 + 8 q + ----- + ----- + ----- + ----- + ----- + - + ---- + 8 q t + |
||
8 4 6 3 4 3 4 2 2 2 t 2 |
8 4 6 3 4 3 4 2 2 2 t 2 |
||
| Line 121: | Line 177: | ||
12 5 |
12 5 |
||
2 q t</nowiki></ |
2 q t</nowiki></code></td></tr> |
||
</table> }} |
|||
Revision as of 17:43, 1 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n248's Link Presentations]
| Planar diagram presentation | X12,1,13,2 X8493 X14,6,15,5 X18,8,19,7 X20,9,21,10 X10,11,1,12 X6,14,7,13 X4,18,5,17 X15,11,16,22 X2,19,3,20 X21,17,22,16 |
| Gauss code | {1, -10, 2, -8, 3, -7, 4, -2, 5, -6}, {6, -1, 7, -3, -9, 11, 8, -4, 10, -5, -11, 9} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(u-1) (v-1) \left(u^2 v^2-u^2 v+u^2-u v^2+3 u v-u+v^2-v+1\right)}{u^{3/2} v^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -6 q^{9/2}+10 q^{7/2}-\frac{1}{q^{7/2}}-14 q^{5/2}+\frac{4}{q^{5/2}}+15 q^{3/2}-\frac{9}{q^{3/2}}+2 q^{11/2}-15 \sqrt{q}+\frac{12}{\sqrt{q}} }[/math] (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z a^{-5} +z^5 a^{-3} +z^3 a^{-3} -z^7 a^{-1} +a z^5-4 z^5 a^{-1} +2 a z^3-6 z^3 a^{-1} +2 a z-3 z a^{-1} +a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ 3 z^4 a^{-6} -3 z^2 a^{-6} +z^7 a^{-5} +5 z^5 a^{-5} -7 z^3 a^{-5} +2 z a^{-5} +3 z^8 a^{-4} -z^6 a^{-4} +z^4 a^{-4} -z^2 a^{-4} +2 z^9 a^{-3} +4 z^7 a^{-3} +a^3 z^5-7 z^5 a^{-3} -a^3 z^3+2 z^3 a^{-3} +10 z^8 a^{-2} +4 a^2 z^6-14 z^6 a^{-2} -5 a^2 z^4+3 z^4 a^{-2} +a^2 z^2+2 z^2 a^{-2} +2 z^9 a^{-1} +8 a z^7+11 z^7 a^{-1} -15 a z^5-28 z^5 a^{-1} +9 a z^3+19 z^3 a^{-1} -4 a z-6 z a^{-1} +a z^{-1} + a^{-1} z^{-1} +7 z^8-9 z^6+z^2-1 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



