L11n93: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
| Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = n | |
t = <nowiki>n</nowiki> | |
||
k = 93 | |
k = 93 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:10,-1,3,-9,8,7,-4,-2,11,-8,9,-3,-5,6,-7,4,-6,5/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:10,-1,3,-9,8,7,-4,-2,11,-8,9,-3,-5,6,-7,4,-6,5/goTop.html | |
||
| Line 42: | Line 42: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[11, NonAlternating, 93]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
| ⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 1, 7, 2], X[12, 4, 13, 3], X[16, 8, 17, 7], X[11, 20, 12, 21], |
|||
X[17, 22, 18, 5], X[21, 18, 22, 19], X[19, 10, 20, 11], |
X[17, 22, 18, 5], X[21, 18, 22, 19], X[19, 10, 20, 11], |
||
X[14, 10, 15, 9], X[8, 16, 9, 15], X[2, 5, 3, 6], X[4, 14, 1, 13]]</nowiki></ |
X[14, 10, 15, 9], X[8, 16, 9, 15], X[2, 5, 3, 6], X[4, 14, 1, 13]]</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
| ⚫ | |||
-3, -5, 6, -7, 4, -6, 5}]</nowiki></ |
-3, -5, 6, -7, 4, -6, 5}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 93]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11n93_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
| ⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 93]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L11n93_ML.gif]]</td></tr><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-1</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
| ⚫ | |||
-q + ---- - ---- + ---- - ------- + 9 Sqrt[q] - 8 q + 5 q - |
-q + ---- - ---- + ---- - ------- + 9 Sqrt[q] - 8 q + 5 q - |
||
7/2 5/2 3/2 Sqrt[q] |
7/2 5/2 3/2 Sqrt[q] |
||
| Line 67: | Line 103: | ||
7/2 9/2 |
7/2 9/2 |
||
3 q + q</nowiki></ |
3 q + q</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
| ⚫ | |||
2 + q - --- + -- - q + -- + 2 q + 3 q - q + q - q |
2 + q - --- + -- - q + -- + 2 q + 3 q - q + q - q |
||
12 8 4 |
12 8 4 |
||
q q q</nowiki></ |
q q q</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
| ⚫ | |||
1 a z 2 z z 2 z 3 3 3 z 5 |
1 a z 2 z z 2 z 3 3 3 z 5 |
||
-(---) + - + -- - --- + a z + -- - ---- - a z + a z - -- - a z |
-(---) + - + -- - --- + a z + -- - ---- - a z + a z - -- - a z |
||
a z z 3 a 3 a a |
a z z 3 a 3 a a |
||
a a</nowiki></ |
a a</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Link[11, NonAlternating, 93]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
| ⚫ | |||
1 a 2 z 4 z 2 2 z 2 z 2 2 4 2 |
1 a 2 z 4 z 2 2 z 2 z 2 2 4 2 |
||
1 - --- - - + --- + --- + 2 a z + z - ---- - ---- + 2 a z + a z - |
1 - --- - - + --- + --- + 2 a z + z - ---- - ---- + 2 a z + a z - |
||
| Line 105: | Line 156: | ||
9 |
9 |
||
a z</nowiki></ |
a z</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
| ⚫ | |||
6 + -- + ------ + ----- + ----- + ----- + ----- + ---- + ---- + 5 t + |
6 + -- + ------ + ----- + ----- + ----- + ----- + ---- + ---- + 5 t + |
||
2 10 4 8 3 6 3 6 2 4 2 4 2 |
2 10 4 8 3 6 3 6 2 4 2 4 2 |
||
| Line 116: | Line 172: | ||
10 5 |
10 5 |
||
q t</nowiki></ |
q t</nowiki></code></td></tr> |
||
</table> }} |
|||
Revision as of 17:43, 1 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n93's Link Presentations]
| Planar diagram presentation | X6172 X12,4,13,3 X16,8,17,7 X11,20,12,21 X17,22,18,5 X21,18,22,19 X19,10,20,11 X14,10,15,9 X8,16,9,15 X2536 X4,14,1,13 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 3, -9, 8, 7, -4, -2, 11, -8, 9, -3, -5, 6, -7, 4, -6, 5} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(t(1)-1) (t(2)-1) \left(2 t(2)^2-3 t(2)+2\right)}{\sqrt{t(1)} t(2)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{9/2}-\frac{1}{q^{9/2}}-3 q^{7/2}+\frac{4}{q^{7/2}}+5 q^{5/2}-\frac{7}{q^{5/2}}-8 q^{3/2}+\frac{8}{q^{3/2}}+9 \sqrt{q}-\frac{10}{\sqrt{q}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^3 z^3+z^3 a^{-3} +z a^{-3} -a z^5-z^5 a^{-1} -a z^3-2 z^3 a^{-1} +a z-2 z a^{-1} +a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -a z^9-z^9 a^{-1} -2 a^2 z^8-3 z^8 a^{-2} -5 z^8-a^3 z^7-2 a z^7-4 z^7 a^{-1} -3 z^7 a^{-3} +2 a^2 z^6+7 z^6 a^{-2} -z^6 a^{-4} +10 z^6-3 a^3 z^5+4 a z^5+17 z^5 a^{-1} +10 z^5 a^{-3} -4 a^4 z^4-4 a^2 z^4-z^4 a^{-2} +3 z^4 a^{-4} -4 z^4-a^5 z^3+2 a^3 z^3-a z^3-13 z^3 a^{-1} -9 z^3 a^{-3} +a^4 z^2+2 a^2 z^2-2 z^2 a^{-2} -2 z^2 a^{-4} +z^2+2 a z+4 z a^{-1} +2 z a^{-3} +1-a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



