L11a477: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
| Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = a | |
t = <nowiki>a</nowiki> | |
||
k = 477 | |
k = 477 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:9,-4,7,-6,8,-5:10,-1,3,-9,4,-2,11,-7,6,-8,5,-3/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:9,-4,7,-6,8,-5:10,-1,3,-9,4,-2,11,-7,6,-8,5,-3/goTop.html | |
||
| Line 44: | Line 44: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[11, Alternating, 477]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
| ⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[11, Alternating, 477]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 1, 7, 2], X[10, 4, 11, 3], X[16, 8, 5, 7], X[18, 9, 19, 10], |
|||
X[22, 15, 17, 16], X[20, 13, 21, 14], X[12, 19, 13, 20], |
X[22, 15, 17, 16], X[20, 13, 21, 14], X[12, 19, 13, 20], |
||
X[14, 21, 15, 22], X[8, 17, 9, 18], X[2, 5, 3, 6], X[4, 12, 1, 11]]</nowiki></ |
X[14, 21, 15, 22], X[8, 17, 9, 18], X[2, 5, 3, 6], X[4, 12, 1, 11]]</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
| ⚫ | |||
{10, -1, 3, -9, 4, -2, 11, -7, 6, -8, 5, -3}]</nowiki></ |
{10, -1, 3, -9, 4, -2, 11, -7, 6, -8, 5, -3}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 477]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a477_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
| ⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 477]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L11a477_ML.gif]]</td></tr><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
| ⚫ | |||
3 + q - -- + -- - -- + -- - -- + -- - -- + -- - - - q |
3 + q - -- + -- - -- + -- - -- + -- - -- + -- - - - q |
||
9 8 7 6 5 4 3 2 q |
9 8 7 6 5 4 3 2 q |
||
q q q q q q q q</nowiki></ |
q q q q q q q q</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
| ⚫ | |||
1 + q + q + q + --- + --- + q + --- + --- + q + --- + |
1 + q + q + q + --- + --- + q + --- + --- + q + --- + |
||
24 20 16 14 10 |
24 20 16 14 10 |
||
| Line 76: | Line 117: | ||
q + -- + q - q - q |
q + -- + q - q - q |
||
6 |
6 |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
| ⚫ | |||
2 4 6 8 a 2 a a 2 2 4 2 |
2 4 6 8 a 2 a a 2 2 4 2 |
||
-a + 9 a - 12 a + 4 a + -- - ---- + -- - 4 a z + 17 a z - |
-a + 9 a - 12 a + 4 a + -- - ---- + -- - 4 a z + 17 a z - |
||
| Line 88: | Line 134: | ||
4 6 6 6 4 8 |
4 6 6 6 4 8 |
||
6 a z - 2 a z + a z</nowiki></ |
6 a z - 2 a z + a z</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
| ⚫ | |||
2 4 6 8 12 a 2 a a 2 a 2 a |
2 4 6 8 12 a 2 a a 2 a 2 a |
||
2 a + 12 a + 15 a + 5 a + a - -- - ---- - -- + ---- + ---- - |
2 a + 12 a + 15 a + 5 a + a - -- - ---- - -- + ---- + ---- - |
||
| Line 115: | Line 166: | ||
6 8 8 8 3 9 5 9 7 9 4 10 6 10 |
6 8 8 8 3 9 5 9 7 9 4 10 6 10 |
||
6 a z + 4 a z + 3 a z + 6 a z + 3 a z + a z + a z</nowiki></ |
6 a z + 4 a z + 3 a z + 6 a z + 3 a z + a z + a z</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
| ⚫ | |||
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
||
5 3 21 8 19 7 17 7 17 6 15 6 15 5 |
5 3 21 8 19 7 17 7 17 6 15 6 15 5 |
||
| Line 131: | Line 187: | ||
---- + --- + --- + -- + 2 q t + q t |
---- + --- + --- + -- + 2 q t + q t |
||
5 3 q q |
5 3 q q |
||
q t q</nowiki></ |
q t q</nowiki></code></td></tr> |
||
</table> }} |
|||
Revision as of 17:44, 1 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a477's Link Presentations]
| Planar diagram presentation | X6172 X10,4,11,3 X16,8,5,7 X18,9,19,10 X22,15,17,16 X20,13,21,14 X12,19,13,20 X14,21,15,22 X8,17,9,18 X2536 X4,12,1,11 |
| Gauss code | {1, -10, 2, -11}, {9, -4, 7, -6, 8, -5}, {10, -1, 3, -9, 4, -2, 11, -7, 6, -8, 5, -3} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(u-1) (w-1) \left(v^2 w^3-2 v^2 w^2+2 v w^2-2 v w+2 w-1\right)}{\sqrt{u} v w^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{-10} -2 q^{-9} +5 q^{-8} -8 q^{-7} +11 q^{-6} -12 q^{-5} +13 q^{-4} -10 q^{-3} +9 q^{-2} -q-5 q^{-1} +3 }[/math] (db) |
| Signature | -4 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^8 z^4+4 a^8 z^2+a^8 z^{-2} +4 a^8-2 a^6 z^6-10 a^6 z^4-17 a^6 z^2-2 a^6 z^{-2} -12 a^6+a^4 z^8+6 a^4 z^6+14 a^4 z^4+17 a^4 z^2+a^4 z^{-2} +9 a^4-a^2 z^6-4 a^2 z^4-4 a^2 z^2-a^2 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{12} z^4-2 a^{12} z^2+a^{12}+2 a^{11} z^5-2 a^{11} z^3+3 a^{10} z^6-2 a^{10} z^4+4 a^9 z^7-5 a^9 z^5+4 a^9 z^3+4 a^8 z^8-6 a^8 z^6+6 a^8 z^4-6 a^8 z^2-a^8 z^{-2} +5 a^8+3 a^7 z^9-3 a^7 z^7-5 a^7 z^5+12 a^7 z^3-10 a^7 z+2 a^7 z^{-1} +a^6 z^{10}+6 a^6 z^8-29 a^6 z^6+43 a^6 z^4-35 a^6 z^2-2 a^6 z^{-2} +15 a^6+6 a^5 z^9-17 a^5 z^7+7 a^5 z^5+11 a^5 z^3-12 a^5 z+2 a^5 z^{-1} +a^4 z^{10}+5 a^4 z^8-33 a^4 z^6+51 a^4 z^4-36 a^4 z^2-a^4 z^{-2} +12 a^4+3 a^3 z^9-9 a^3 z^7+a^3 z^5+9 a^3 z^3-3 a^3 z+3 a^2 z^8-13 a^2 z^6+17 a^2 z^4-9 a^2 z^2+2 a^2+a z^7-4 a z^5+4 a z^3-a z }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



