L11a115: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was |
<!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit! |
||
<!-- --> <!-- |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
--> |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
|||
<!-- Almost certainly, you want to edit [[Template:Link Page]], which actually produces this page. |
|||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
| Line 35: | Line 44: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 28, 2005, 22:58:49)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 115]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 115]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
| Line 50: | Line 59: | ||
-3, 4, -5, 7, -6, 8, -4}]</nowiki></pre></td></tr> |
-3, 4, -5, 7, -6, 8, -4}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 115]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a115_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, Alternating, 115]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>-1</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 115]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(17/2) 2 5 8 11 14 15 13 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Link[11, Alternating, 115]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>ComplexInfinity</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Link[11, Alternating, 115]], KnotSignature[Link[11, Alternating, 115]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Infinity, -1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 115]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(17/2) 2 5 8 11 14 15 13 |
|||
-q + ----- - ----- + ----- - ---- + ---- - ---- + ---- - |
-q + ----- - ----- + ----- - ---- + ---- - ---- + ---- - |
||
15/2 13/2 11/2 9/2 7/2 5/2 3/2 |
15/2 13/2 11/2 9/2 7/2 5/2 3/2 |
||
| Line 70: | Line 71: | ||
------- + 7 Sqrt[q] - 4 q + q |
------- + 7 Sqrt[q] - 4 q + q |
||
Sqrt[q]</nowiki></pre></td></tr> |
Sqrt[q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[11, Alternating, 115]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -28 2 -22 2 3 3 2 3 2 -2 2 |
||
4 + q + --- + q + --- - --- - --- + --- + -- + -- - q - 2 q + |
4 + q + --- + q + --- - --- - --- + --- + -- + -- - q - 2 q + |
||
26 20 18 12 10 6 4 |
26 20 18 12 10 6 4 |
||
| Line 78: | Line 79: | ||
6 8 |
6 8 |
||
2 q - q</nowiki></pre></td></tr> |
2 q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[11, Alternating, 115]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 7 9 3 |
||
a a a 2 a a 5 7 z 3 |
a a a 2 a a 5 7 z 3 |
||
-(-) + -- + -- - ---- + -- - 2 a z + 3 a z - 3 a z + -- - a z + |
-(-) + -- + -- - ---- + -- - 2 a z + 3 a z - 3 a z + -- - a z + |
||
| Line 86: | Line 87: | ||
5 3 5 3 5 |
5 3 5 3 5 |
||
3 a z - a z - a z</nowiki></pre></td></tr> |
3 a z - a z - a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[11, Alternating, 115]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 7 9 |
||
2 4 6 8 a a a 2 a a 3 |
2 4 6 8 a a a 2 a a 3 |
||
-a - 2 a - 3 a - a + - + -- - -- - ---- - -- - 3 a z - 2 a z + |
-a - 2 a - 3 a - a + - + -- - -- - ---- - -- - 3 a z - 2 a z + |
||
| Line 117: | Line 118: | ||
6 10 |
6 10 |
||
a z</nowiki></pre></td></tr> |
a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 115]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 5 1 1 1 4 1 4 4 |
||
{0, -(---)} |
|||
24</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 115]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 5 1 1 1 4 1 4 4 |
|||
7 + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + |
7 + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + |
||
2 18 8 16 7 14 7 14 6 12 6 12 5 10 5 |
2 18 8 16 7 14 7 14 6 12 6 12 5 10 5 |
||
Revision as of 12:00, 31 August 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a115's Link Presentations]
| Planar diagram presentation | X6172 X14,3,15,4 X16,8,17,7 X22,18,5,17 X18,11,19,12 X20,9,21,10 X10,19,11,20 X8,21,9,22 X12,16,13,15 X2536 X4,13,1,14 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 3, -8, 6, -7, 5, -9, 11, -2, 9, -3, 4, -5, 7, -6, 8, -4} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{2 u v^3-7 u v^2+10 u v-4 u-4 v^3+10 v^2-7 v+2}{\sqrt{u} v^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{11}{q^{9/2}}+\frac{14}{q^{7/2}}+q^{5/2}-\frac{15}{q^{5/2}}-4 q^{3/2}+\frac{13}{q^{3/2}}-\frac{1}{q^{17/2}}+\frac{2}{q^{15/2}}-\frac{5}{q^{13/2}}+\frac{8}{q^{11/2}}+7 \sqrt{q}-\frac{11}{\sqrt{q}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^9 z^{-1} -3 a^7 z-2 a^7 z^{-1} +3 a^5 z^3+3 a^5 z+a^5 z^{-1} -a^3 z^5+a^3 z^{-1} -a z^5-a z^3+z^3 a^{-1} -2 a z-a z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^9 z^7-5 a^9 z^5+8 a^9 z^3-5 a^9 z+a^9 z^{-1} +2 a^8 z^8-8 a^8 z^6+9 a^8 z^4-4 a^8 z^2+a^8+2 a^7 z^9-4 a^7 z^7-7 a^7 z^5+18 a^7 z^3-12 a^7 z+2 a^7 z^{-1} +a^6 z^{10}+3 a^6 z^8-20 a^6 z^6+25 a^6 z^4-12 a^6 z^2+3 a^6+6 a^5 z^9-15 a^5 z^7+4 a^5 z^5+11 a^5 z^3-8 a^5 z+a^5 z^{-1} +a^4 z^{10}+8 a^4 z^8-29 a^4 z^6+30 a^4 z^4-12 a^4 z^2+2 a^4+4 a^3 z^9-2 a^3 z^7-7 a^3 z^5+4 a^3 z^3+2 a^3 z-a^3 z^{-1} +7 a^2 z^8-10 a^2 z^6+6 a^2 z^4+z^4 a^{-2} -4 a^2 z^2+a^2+8 a z^7-9 a z^5+4 z^5 a^{-1} -3 z^3 a^{-1} +3 a z-a z^{-1} +7 z^6-7 z^4 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



