L10a174: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
| Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 10 | |
n = 10 | |
||
t = a | |
t = <nowiki>a</nowiki> | |
||
k = 174 | |
k = 174 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2,4,-5:2,-1,6,-7:5,-4,3,-10:7,-6,8,-9:10,-3,9,-8/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2,4,-5:2,-1,6,-7:5,-4,3,-10:7,-6,8,-9:10,-3,9,-8/goTop.html | |
||
| Line 43: | Line 43: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[10, Alternating, 174]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
| ⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>10</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[10, Alternating, 174]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 1, 7, 2], X[2, 5, 3, 6], X[18, 11, 19, 12], X[10, 3, 11, 4], |
|||
X[4, 9, 1, 10], X[14, 7, 15, 8], X[8, 13, 5, 14], X[20, 15, 17, 16], |
X[4, 9, 1, 10], X[14, 7, 15, 8], X[8, 13, 5, 14], X[20, 15, 17, 16], |
||
X[16, 19, 13, 20], X[12, 17, 9, 18]]</nowiki></ |
X[16, 19, 13, 20], X[12, 17, 9, 18]]</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
| ⚫ | |||
{7, -6, 8, -9}, {10, -3, 9, -8}]</nowiki></ |
{7, -6, 8, -9}, {10, -3, 9, -8}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[10, Alternating, 174]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L10a174_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
| ⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[10, Alternating, 174]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L10a174_ML.gif]]</td></tr><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
| ⚫ | |||
q - q + --- - -- + -- - -- + -- - -- + -- - -- + q |
q - q + --- - -- + -- - -- + -- - -- + -- - -- + q |
||
10 9 8 7 6 5 4 3 |
10 9 8 7 6 5 4 3 |
||
q q q q q q q q</nowiki></ |
q q q q q q q q</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
| ⚫ | |||
q + --- + --- + --- + --- + --- + --- + --- + --- + --- + --- + |
q + --- + --- + --- + --- + --- + --- + --- + --- + --- + --- + |
||
38 36 34 32 30 28 26 24 22 20 |
38 36 34 32 30 28 26 24 22 20 |
||
| Line 75: | Line 116: | ||
--- + --- + q + --- + --- - -- + q |
--- + --- + q + --- + --- - -- + q |
||
18 16 12 10 8 |
18 16 12 10 8 |
||
q q q q q</nowiki></ |
q q q q q</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
| ⚫ | |||
6 8 10 a 4 a 6 a 4 a a 5 a |
6 8 10 a 4 a 6 a 4 a a 5 a |
||
10 a - 20 a + 10 a + -- - ---- + ----- - ----- + --- + ---- - |
10 a - 20 a + 10 a + -- - ---- + ----- - ----- + --- + ---- - |
||
| Line 87: | Line 133: | ||
----- + ------ - ----- + 10 a z - 10 a z + a z + 4 a z |
----- + ------ - ----- + 10 a z - 10 a z + a z + 4 a z |
||
2 2 2 |
2 2 2 |
||
z z z</nowiki></ |
z z z</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
| ⚫ | |||
6 8 10 12 14 a 4 a 6 a 4 a |
6 8 10 12 14 a 4 a 6 a 4 a |
||
-10 a - 25 a - 31 a - 25 a - 10 a - -- - ---- - ----- - ----- - |
-10 a - 25 a - 31 a - 25 a - 10 a - -- - ---- - ----- - ----- - |
||
| Line 123: | Line 174: | ||
13 7 8 8 10 8 12 8 9 9 11 9 |
13 7 8 8 10 8 12 8 9 9 11 9 |
||
a z + 5 a z + 6 a z + a z + a z + a z</nowiki></ |
a z + 5 a z + 6 a z + a z + a z + a z</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
| ⚫ | |||
q + q + ------- + ------ + ------ + ------ + ------ + ------ + |
q + q + ------- + ------ + ------ + ------ + ------ + ------ + |
||
25 10 21 9 21 8 19 8 19 7 17 7 |
25 10 21 9 21 8 19 8 19 7 17 7 |
||
| Line 138: | Line 194: | ||
----- + ----- + ----- + ---- |
----- + ----- + ----- + ---- |
||
9 3 9 2 7 2 5 |
9 3 9 2 7 2 5 |
||
q t q t q t q t</nowiki></ |
q t q t q t q t</nowiki></code></td></tr> |
||
</table> }} |
|||
Revision as of 17:51, 1 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L10a174 is a closed five-link chain. |
Link Presentations
[edit Notes on L10a174's Link Presentations]
| Planar diagram presentation | X6172 X2536 X18,11,19,12 X10,3,11,4 X4,9,1,10 X14,7,15,8 X8,13,5,14 X20,15,17,16 X16,19,13,20 X12,17,9,18 |
| Gauss code | {1, -2, 4, -5}, {2, -1, 6, -7}, {5, -4, 3, -10}, {7, -6, 8, -9}, {10, -3, 9, -8} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{u v w x+u v w y-u v w+u v x y-u v x-2 u v y+u v+u w x y-2 u w x-u w y+u w-2 u x y+2 u x+2 u y-u+v w x y-2 v w x-2 v w y+2 v w-v x y+v x+2 v y-v-w x y+2 w x+w y-w+x y-x-y}{\sqrt{u} \sqrt{v} \sqrt{w} \sqrt{x} \sqrt{y}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{-12} - q^{-11} +6 q^{-10} -6 q^{-9} +15 q^{-8} -11 q^{-7} +15 q^{-6} -10 q^{-5} +10 q^{-4} -4 q^{-3} + q^{-2} }[/math] (db) |
| Signature | -4 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^{14} z^{-4} -4 a^{12} z^{-4} -5 a^{12} z^{-2} +6 a^{10} z^{-4} +15 a^{10} z^{-2} +10 a^{10}-4 a^8 z^{-4} -10 a^8 z^2-15 a^8 z^{-2} -20 a^8+4 a^6 z^4+a^6 z^{-4} +10 a^6 z^2+5 a^6 z^{-2} +10 a^6+a^4 z^4 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{14} z^6-5 a^{14} z^4-a^{14} z^{-4} +10 a^{14} z^2+5 a^{14} z^{-2} -10 a^{14}+a^{13} z^7-10 a^{13} z^3+4 a^{13} z^{-3} +20 a^{13} z-15 a^{13} z^{-1} +a^{12} z^8+4 a^{12} z^6-20 a^{12} z^4-4 a^{12} z^{-4} +30 a^{12} z^2+14 a^{12} z^{-2} -25 a^{12}+a^{11} z^9+2 a^{11} z^7+2 a^{11} z^5-30 a^{11} z^3+12 a^{11} z^{-3} +55 a^{11} z-41 a^{11} z^{-1} +6 a^{10} z^8-2 a^{10} z^6-25 a^{10} z^4-6 a^{10} z^{-4} +40 a^{10} z^2+18 a^{10} z^{-2} -31 a^{10}+a^9 z^9+11 a^9 z^7-12 a^9 z^5-30 a^9 z^3+12 a^9 z^{-3} +55 a^9 z-41 a^9 z^{-1} +5 a^8 z^8+5 a^8 z^6-25 a^8 z^4-4 a^8 z^{-4} +30 a^8 z^2+14 a^8 z^{-2} -25 a^8+10 a^7 z^7-10 a^7 z^5-10 a^7 z^3+4 a^7 z^{-3} +20 a^7 z-15 a^7 z^{-1} +10 a^6 z^6-14 a^6 z^4-a^6 z^{-4} +10 a^6 z^2+5 a^6 z^{-2} -10 a^6+4 a^5 z^5+a^4 z^4 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|








