L11a380: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
| Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = a | |
t = <nowiki>a</nowiki> | |
||
k = 380 | |
k = 380 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2,3,-10,5,-6,7,-8,9,-11:6,-1,2,-3,4,-9,8,-5,10,-4,11,-7/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2,3,-10,5,-6,7,-8,9,-11:6,-1,2,-3,4,-9,8,-5,10,-4,11,-7/goTop.html | |
||
| Line 44: | Line 44: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[11, Alternating, 380]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
| ⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[11, Alternating, 380]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[12, 1, 13, 2], X[2, 13, 3, 14], X[14, 3, 15, 4], |
|||
X[20, 15, 21, 16], X[18, 6, 19, 5], X[6, 11, 7, 12], X[22, 7, 11, 8], |
X[20, 15, 21, 16], X[18, 6, 19, 5], X[6, 11, 7, 12], X[22, 7, 11, 8], |
||
X[8, 18, 9, 17], X[16, 10, 17, 9], X[4, 20, 5, 19], X[10, 21, 1, 22]]</nowiki></ |
X[8, 18, 9, 17], X[16, 10, 17, 9], X[4, 20, 5, 19], X[10, 21, 1, 22]]</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
| ⚫ | |||
{6, -1, 2, -3, 4, -9, 8, -5, 10, -4, 11, -7}]</nowiki></ |
{6, -1, 2, -3, 4, -9, 8, -5, 10, -4, 11, -7}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 380]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a380_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
| ⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 380]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L11a380_ML.gif]]</td></tr><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
| ⚫ | |||
q - ----- + ----- - ----- + ---- - ---- + ---- - ---- + |
q - ----- + ----- - ----- + ---- - ---- + ---- - ---- + |
||
15/2 13/2 11/2 9/2 7/2 5/2 3/2 |
15/2 13/2 11/2 9/2 7/2 5/2 3/2 |
||
| Line 70: | Line 106: | ||
11 3/2 5/2 |
11 3/2 5/2 |
||
------- - 7 Sqrt[q] + 3 q - q |
------- - 7 Sqrt[q] + 3 q - q |
||
Sqrt[q]</nowiki></ |
Sqrt[q]</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
| ⚫ | |||
-2 - q + q - --- + --- - q + --- - --- + -- - q + -- + -- + |
-2 - q + q - --- + --- - q + --- - --- + -- - q + -- + -- + |
||
20 18 12 10 8 4 2 |
20 18 12 10 8 4 2 |
||
| Line 78: | Line 119: | ||
2 4 8 |
2 4 8 |
||
2 q - q + q</nowiki></ |
2 q - q + q</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
| ⚫ | |||
a a 2 z 5 7 z 3 3 3 |
a a 2 z 5 7 z 3 3 3 |
||
-(-) + -- - --- + a z + 2 a z - 2 a z - -- + 5 a z - 2 a z + |
-(-) + -- - --- + a z + 2 a z - 2 a z - -- + 5 a z - 2 a z + |
||
| Line 86: | Line 132: | ||
5 3 7 3 5 3 5 5 5 3 7 |
5 3 7 3 5 3 5 5 5 3 7 |
||
5 a z - a z + 2 a z - 3 a z + 2 a z - a z</nowiki></ |
5 a z - a z + 2 a z - 3 a z + 2 a z - a z</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 |
|||
2 a a 2 z 3 5 7 2 |
2 a a 2 z 3 5 7 2 |
||
-a + - + -- + --- - 2 a z - 4 a z + 5 a z + 5 a z + 4 z + |
-a + - + -- + --- - 2 a z - 4 a z + 5 a z + 5 a z + 4 z + |
||
| Line 118: | Line 169: | ||
2 10 4 10 |
2 10 4 10 |
||
2 a z - 2 a z</nowiki></ |
2 a z - 2 a z</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
| ⚫ | |||
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
||
4 2 18 7 16 6 14 6 14 5 12 5 12 4 |
4 2 18 7 16 6 14 6 14 5 12 5 12 4 |
||
| Line 131: | Line 187: | ||
2 2 2 2 3 4 3 6 4 |
2 2 2 2 3 4 3 6 4 |
||
2 t + 5 q t + q t + 2 q t + q t</nowiki></ |
2 t + 5 q t + q t + 2 q t + q t</nowiki></code></td></tr> |
||
</table> }} |
|||
Revision as of 17:53, 1 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a380's Link Presentations]
| Planar diagram presentation | X12,1,13,2 X2,13,3,14 X14,3,15,4 X20,15,21,16 X18,6,19,5 X6,11,7,12 X22,7,11,8 X8,18,9,17 X16,10,17,9 X4,20,5,19 X10,21,1,22 |
| Gauss code | {1, -2, 3, -10, 5, -6, 7, -8, 9, -11}, {6, -1, 2, -3, 4, -9, 8, -5, 10, -4, 11, -7} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{u^4 v^2-u^4 v-u^3 v^4+4 u^3 v^3-5 u^3 v^2+3 u^3 v-u^3+2 u^2 v^4-6 u^2 v^3+7 u^2 v^2-6 u^2 v+2 u^2-u v^4+3 u v^3-5 u v^2+4 u v-u-v^3+v^2}{u^2 v^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{5/2}+3 q^{3/2}-7 \sqrt{q}+\frac{11}{\sqrt{q}}-\frac{15}{q^{3/2}}+\frac{17}{q^{5/2}}-\frac{18}{q^{7/2}}+\frac{15}{q^{9/2}}-\frac{12}{q^{11/2}}+\frac{7}{q^{13/2}}-\frac{3}{q^{15/2}}+\frac{1}{q^{17/2}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^3 a^7-2 z a^7+2 z^5 a^5+5 z^3 a^5+2 z a^5-z^7 a^3-3 z^5 a^3-2 z^3 a^3+a^3 z^{-1} +2 z^5 a+5 z^3 a+z a-a z^{-1} -z^3 a^{-1} -2 z a^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{10} z^4-a^{10} z^2+3 a^9 z^5-2 a^9 z^3+6 a^8 z^6-6 a^8 z^4+3 a^8 z^2+9 a^7 z^7-15 a^7 z^5+14 a^7 z^3-5 a^7 z+9 a^6 z^8-15 a^6 z^6+9 a^6 z^4-a^6 z^2+6 a^5 z^9-5 a^5 z^7-11 a^5 z^5+14 a^5 z^3-5 a^5 z+2 a^4 z^{10}+8 a^4 z^8-31 a^4 z^6+25 a^4 z^4-7 a^4 z^2+10 a^3 z^9-27 a^3 z^7+19 a^3 z^5-8 a^3 z^3+4 a^3 z-a^3 z^{-1} +2 a^2 z^{10}+2 a^2 z^8-21 a^2 z^6+21 a^2 z^4-6 a^2 z^2+a^2+4 a z^9-12 a z^7+z^7 a^{-1} +8 a z^5-4 z^5 a^{-1} -a z^3+5 z^3 a^{-1} +2 a z-a z^{-1} -2 z a^{-1} +3 z^8-11 z^6+12 z^4-4 z^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



