L11n400: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
| Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = n | |
t = <nowiki>n</nowiki> | |
||
k = 400 | |
k = 400 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:-5,4,-9,3:10,-1,-4,5,11,-2,7,-8,6,-7,-3,9,8,-6/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:-5,4,-9,3:10,-1,-4,5,11,-2,7,-8,6,-7,-3,9,8,-6/goTop.html | |
||
| Line 43: | Line 43: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[11, NonAlternating, 400]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
| ⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[15, 22, 16, 19], X[7, 20, 8, 21], |
|||
X[19, 8, 20, 9], X[18, 14, 5, 13], X[14, 12, 15, 11], |
X[19, 8, 20, 9], X[18, 14, 5, 13], X[14, 12, 15, 11], |
||
X[12, 18, 13, 17], X[21, 16, 22, 17], X[2, 5, 3, 6], X[4, 9, 1, 10]]</nowiki></ |
X[12, 18, 13, 17], X[21, 16, 22, 17], X[2, 5, 3, 6], X[4, 9, 1, 10]]</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
| ⚫ | |||
{10, -1, -4, 5, 11, -2, 7, -8, 6, -7, -3, 9, 8, -6}]</nowiki></ |
{10, -1, -4, 5, 11, -2, 7, -8, 6, -7, -3, 9, 8, -6}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 400]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11n400_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
| ⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 400]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L11n400_ML.gif]]</td></tr><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
| ⚫ | |||
-5 + q + q + -- - -- + -- - -- + - + 3 q - q |
-5 + q + q + -- - -- + -- - -- + - + 3 q - q |
||
5 4 3 2 q |
5 4 3 2 q |
||
q q q q</nowiki></ |
q q q q</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
| ⚫ | |||
q + --- + --- + --- + --- + --- + --- - -- + q - -- + q - q + |
q + --- + --- + --- + --- + --- + --- - -- + q - -- + q - q + |
||
24 22 20 18 16 14 8 4 |
24 22 20 18 16 14 8 4 |
||
| Line 73: | Line 114: | ||
4 6 |
4 6 |
||
q - q</nowiki></ |
q - q</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
| ⚫ | |||
2 4 6 8 a 4 a 5 a 2 a 2 2 2 |
2 4 6 8 a 4 a 5 a 2 a 2 2 2 |
||
-1 + a + 6 a - 7 a + a - -- + ---- - ---- + ---- - 2 z + 5 a z + |
-1 + a + 6 a - 7 a + a - -- + ---- - ---- + ---- - 2 z + 5 a z + |
||
| Line 82: | Line 128: | ||
4 2 6 2 4 2 4 2 6 |
4 2 6 2 4 2 4 2 6 |
||
3 a z - 2 a z - z + 4 a z + a z</nowiki></ |
3 a z - 2 a z - z + 4 a z + a z</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Link[11, NonAlternating, 400]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
| ⚫ | |||
2 4 6 8 a 4 a 5 a 2 a a 5 a |
2 4 6 8 a 4 a 5 a 2 a a 5 a |
||
-1 - a + 12 a + 23 a + 12 a - -- - ---- - ---- - ---- + - + ---- + |
-1 - a + 12 a + 23 a + 12 a - -- - ---- - ---- - ---- + - + ---- + |
||
| Line 112: | Line 163: | ||
7 7 2 8 4 8 6 8 8 8 |
7 7 2 8 4 8 6 8 8 8 |
||
a z + a z + a z + a z + a z</nowiki></ |
a z + a z + a z + a z + a z</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
| ⚫ | |||
-- + - + ------ + ------ + ------ + ----- + ------ + ----- + ----- + |
-- + - + ------ + ------ + ------ + ----- + ------ + ----- + ----- + |
||
3 q 17 8 15 8 13 6 9 5 11 4 9 4 9 3 |
3 q 17 8 15 8 13 6 9 5 11 4 9 4 9 3 |
||
| Line 125: | Line 181: | ||
3 2 5 3 |
3 2 5 3 |
||
2 q t + q t</nowiki></ |
2 q t + q t</nowiki></code></td></tr> |
||
</table> }} |
|||
Revision as of 17:54, 1 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n400's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X15,22,16,19 X7,20,8,21 X19,8,20,9 X18,14,5,13 X14,12,15,11 X12,18,13,17 X21,16,22,17 X2536 X4,9,1,10 |
| Gauss code | {1, -10, 2, -11}, {-5, 4, -9, 3}, {10, -1, -4, 5, 11, -2, 7, -8, 6, -7, -3, 9, 8, -6} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(t(3)-1) \left(t(3)^4+t(1) t(2) t(3)^3-t(2) t(3)^3+t(3)^3+t(1) t(3)^2-t(1) t(2) t(3)^2+t(2) t(3)^2-t(3)^2-t(1) t(3)+t(1) t(2) t(3)+t(3)+t(1) t(2)\right)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^2+3 q-5+6 q^{-1} -6 q^{-2} +6 q^{-3} -4 q^{-4} +3 q^{-5} + q^{-6} + q^{-8} }[/math] (db) |
| Signature | -2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ 2 a^8 z^{-2} +a^8-2 z^2 a^6-5 a^6 z^{-2} -7 a^6+3 z^2 a^4+4 a^4 z^{-2} +6 a^4+z^6 a^2+4 z^4 a^2+5 z^2 a^2-a^2 z^{-2} +a^2-z^4-2 z^2-1 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^8 a^8-8 z^6 a^8+21 z^4 a^8-24 z^2 a^8-2 a^8 z^{-2} +12 a^8+z^7 a^7-10 z^5 a^7+25 z^3 a^7-21 z a^7+5 a^7 z^{-1} +z^8 a^6-11 z^6 a^6+35 z^4 a^6-41 z^2 a^6-5 a^6 z^{-2} +23 a^6+2 z^7 a^5-15 z^5 a^5+42 z^3 a^5-35 z a^5+9 a^5 z^{-1} +z^8 a^4-3 z^6 a^4+9 z^4 a^4-12 z^2 a^4-4 a^4 z^{-2} +12 a^4+4 z^7 a^3-11 z^5 a^3+17 z^3 a^3-15 z a^3+5 a^3 z^{-1} +z^8 a^2+3 z^6 a^2-12 z^4 a^2+8 z^2 a^2-a^2 z^{-2} -a^2+3 z^7 a-5 z^5 a-2 z^3 a+a z^{-1} +3 z^6-7 z^4+3 z^2-1+z^5 a^{-1} -2 z^3 a^{-1} +z a^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



