L11a381: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
| Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = a | |
t = <nowiki>a</nowiki> | |
||
k = 381 | |
k = 381 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-11,4,-8,5,-6,7,-9,10,-3:6,-1,2,-4,8,-10,9,-5,11,-2,3,-7/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-11,4,-8,5,-6,7,-9,10,-3:6,-1,2,-4,8,-10,9,-5,11,-2,3,-7/goTop.html | |
||
| Line 44: | Line 44: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[11, Alternating, 381]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
| ⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[11, Alternating, 381]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[12, 1, 13, 2], X[20, 13, 21, 14], X[10, 21, 1, 22], |
|||
X[14, 4, 15, 3], X[18, 6, 19, 5], X[6, 11, 7, 12], X[22, 7, 11, 8], |
X[14, 4, 15, 3], X[18, 6, 19, 5], X[6, 11, 7, 12], X[22, 7, 11, 8], |
||
X[4, 16, 5, 15], X[8, 18, 9, 17], X[16, 10, 17, 9], X[2, 20, 3, 19]]</nowiki></ |
X[4, 16, 5, 15], X[8, 18, 9, 17], X[16, 10, 17, 9], X[2, 20, 3, 19]]</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
| ⚫ | |||
{6, -1, 2, -4, 8, -10, 9, -5, 11, -2, 3, -7}]</nowiki></ |
{6, -1, 2, -4, 8, -10, 9, -5, 11, -2, 3, -7}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 381]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a381_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
| ⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 381]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L11a381_ML.gif]]</td></tr><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>1</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
| ⚫ | |||
q - ---- + ---- - ---- + ------- - 27 Sqrt[q] + 26 q - |
q - ---- + ---- - ---- + ------- - 27 Sqrt[q] + 26 q - |
||
7/2 5/2 3/2 Sqrt[q] |
7/2 5/2 3/2 Sqrt[q] |
||
| Line 69: | Line 105: | ||
5/2 7/2 9/2 11/2 13/2 |
5/2 7/2 9/2 11/2 13/2 |
||
23 q + 17 q - 10 q + 4 q - q</nowiki></ |
23 q + 17 q - 10 q + 4 q - q</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
| ⚫ | |||
6 - q + q + q - -- + -- - -- - 3 q + 6 q - 3 q + 2 q + |
6 - q + q + q - -- + -- - -- - 3 q + 6 q - 3 q + 2 q + |
||
8 6 4 |
8 6 4 |
||
| Line 77: | Line 118: | ||
10 12 14 16 18 20 |
10 12 14 16 18 20 |
||
3 q - 4 q + 4 q - q - q + q</nowiki></ |
3 q - 4 q + 4 q - q - q + q</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
| ⚫ | |||
1 1 z 3 z 3 z 3 z 3 3 3 2 z |
1 1 z 3 z 3 z 3 z 3 3 3 2 z |
||
-(----) + --- - -- + --- - a z - -- + ---- + 3 a z - a z + ---- - |
-(----) + --- - -- + --- - a z - -- + ---- + 3 a z - a z + ---- - |
||
| Line 88: | Line 134: | ||
2 z 5 z |
2 z 5 z |
||
---- + 2 a z - -- |
---- + 2 a z - -- |
||
a a</nowiki></ |
a a</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
| ⚫ | |||
-2 1 1 3 z z 5 z 3 2 z 4 z |
-2 1 1 3 z z 5 z 3 2 z 4 z |
||
-a + ---- + --- + --- + -- - --- - 2 a z + a z + 9 z - -- + ---- + |
-a + ---- + --- + --- + -- - --- - 2 a z + a z + 9 z - -- + ---- + |
||
| Line 124: | Line 175: | ||
8 a z - ---- - ----- - 8 a z - 3 z - ----- |
8 a z - ---- - ----- - 8 a z - 3 z - ----- |
||
3 a 2 |
3 a 2 |
||
a a</nowiki></ |
a a</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
| ⚫ | |||
15 + 13 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
15 + 13 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
||
10 5 8 4 6 4 6 3 4 3 4 2 2 2 |
10 5 8 4 6 4 6 3 4 3 4 2 2 2 |
||
| Line 137: | Line 193: | ||
8 3 8 4 10 4 10 5 12 5 14 6 |
8 3 8 4 10 4 10 5 12 5 14 6 |
||
10 q t + 3 q t + 7 q t + q t + 3 q t + q t</nowiki></ |
10 q t + 3 q t + 7 q t + q t + 3 q t + q t</nowiki></code></td></tr> |
||
</table> }} |
|||
Revision as of 17:54, 1 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a381's Link Presentations]
| Planar diagram presentation | X12,1,13,2 X20,13,21,14 X10,21,1,22 X14,4,15,3 X18,6,19,5 X6,11,7,12 X22,7,11,8 X4,16,5,15 X8,18,9,17 X16,10,17,9 X2,20,3,19 |
| Gauss code | {1, -11, 4, -8, 5, -6, 7, -9, 10, -3}, {6, -1, 2, -4, 8, -10, 9, -5, 11, -2, 3, -7} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{t(2)^2 t(1)^4-t(2) t(1)^4-t(2)^4 t(1)^3+5 t(2)^3 t(1)^3-8 t(2)^2 t(1)^3+5 t(2) t(1)^3-t(1)^3+2 t(2)^4 t(1)^2-9 t(2)^3 t(1)^2+15 t(2)^2 t(1)^2-9 t(2) t(1)^2+2 t(1)^2-t(2)^4 t(1)+5 t(2)^3 t(1)-8 t(2)^2 t(1)+5 t(2) t(1)-t(1)-t(2)^3+t(2)^2}{t(1)^2 t(2)^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -10 q^{9/2}+\frac{1}{q^{9/2}}+17 q^{7/2}-\frac{4}{q^{7/2}}-23 q^{5/2}+\frac{10}{q^{5/2}}+26 q^{3/2}-\frac{17}{q^{3/2}}-q^{13/2}+4 q^{11/2}-27 \sqrt{q}+\frac{22}{\sqrt{q}} }[/math] (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^7 a^{-1} +2 a z^5-2 z^5 a^{-1} +2 z^5 a^{-3} -a^3 z^3+3 a z^3+3 z^3 a^{-3} -z^3 a^{-5} -a^3 z+3 z a^{-1} -z a^{-5} + a^{-1} z^{-1} - a^{-3} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^5 a^{-7} -z^3 a^{-7} +4 z^6 a^{-6} -4 z^4 a^{-6} +z^2 a^{-6} +9 z^7 a^{-5} -13 z^5 a^{-5} +9 z^3 a^{-5} -3 z a^{-5} +12 z^8 a^{-4} +a^4 z^6-18 z^6 a^{-4} -2 a^4 z^4+12 z^4 a^{-4} +a^4 z^2-4 z^2 a^{-4} +9 z^9 a^{-3} +4 a^3 z^7-3 z^7 a^{-3} -8 a^3 z^5-15 z^5 a^{-3} +5 a^3 z^3+13 z^3 a^{-3} -a^3 z-z a^{-3} - a^{-3} z^{-1} +3 z^{10} a^{-2} +8 a^2 z^8+18 z^8 a^{-2} -17 a^2 z^6-46 z^6 a^{-2} +12 a^2 z^4+33 z^4 a^{-2} -4 a^2 z^2-9 z^2 a^{-2} + a^{-2} +8 a z^9+17 z^9 a^{-1} -11 a z^7-27 z^7 a^{-1} +7 z^5 a^{-1} -2 z^3 a^{-1} +2 a z+5 z a^{-1} - a^{-1} z^{-1} +3 z^{10}+14 z^8-42 z^6+31 z^4-9 z^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



