L10n43: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit!
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. -->
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. -->
<!-- <math>\text{Null}</math> -->
<!-- -->
<!-- <math>\text{Null}</math> -->
<!-- -->
<!-- WARNING! WARNING! WARNING!
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit!
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit!
Line 10: Line 10:
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately.
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately.
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. -->
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. -->
<!-- <math>\text{Null}</math> -->
<!-- -->
{{Link Page|
{{Link Page|
n = 10 |
n = 10 |
t = n |
t = <nowiki>n</nowiki> |
k = 43 |
k = 43 |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,2,-5,-6,8:4,-1,3,-2,7,6,-10,9,5,-7,-8,10,-9,-3/goTop.html |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,2,-5,-6,8:4,-1,3,-2,7,6,-10,9,5,-7,-8,10,-9,-3/goTop.html |
Line 41: Line 41:
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
</tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 28, 2005, 22:58:49)...</td></tr>
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[10, NonAlternating, 43]]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Length[Skeleton[Link[10, NonAlternating, 43]]]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[10, NonAlternating, 43]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Link[10, NonAlternating, 43]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[8, 1, 9, 2], X[10, 4, 11, 3], X[20, 10, 7, 9], X[2, 7, 3, 8],
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>10</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[10, NonAlternating, 43]]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Link[10, NonAlternating, 43]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[8, 1, 9, 2], X[10, 4, 11, 3], X[20, 10, 7, 9], X[2, 7, 3, 8],
X[4, 15, 5, 16], X[5, 13, 6, 12], X[16, 12, 17, 11], X[17, 6, 18, 1],
X[4, 15, 5, 16], X[5, 13, 6, 12], X[16, 12, 17, 11], X[17, 6, 18, 1],
X[19, 15, 20, 14], X[13, 19, 14, 18]]</nowiki></pre></td></tr>
X[19, 15, 20, 14], X[13, 19, 14, 18]]</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Link[10, NonAlternating, 43]]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[{1, -4, 2, -5, -6, 8},
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Link[10, NonAlternating, 43]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[{1, -4, 2, -5, -6, 8},
{4, -1, 3, -2, 7, 6, -10, 9, 5, -7, -8, 10, -9, -3}]</nowiki></pre></td></tr>
{4, -1, 3, -2, 7, 6, -10, 9, 5, -7, -8, 10, -9, -3}]</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[10, NonAlternating, 43]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L10n43_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[10, NonAlternating, 43]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>1</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[10, NonAlternating, 43]][q]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[10, NonAlternating, 43]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:L10n43_ML.gif]]</td></tr><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 3 3/2 5/2 7/2 9/2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>KnotSignature[Link[10, NonAlternating, 43]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>1</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>J=Jones[Link[10, NonAlternating, 43]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 3 3/2 5/2 7/2 9/2
---- + ------- - 6 Sqrt[q] + 6 q - 7 q + 6 q - 4 q +
---- + ------- - 6 Sqrt[q] + 6 q - 7 q + 6 q - 4 q +
3/2 Sqrt[q]
3/2 Sqrt[q]
Line 66: Line 102:
11/2 13/2
11/2 13/2
3 q - q</nowiki></pre></td></tr>
3 q - q</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[10, NonAlternating, 43]][q]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 -2 2 4 6 8 12 18 20
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Link[10, NonAlternating, 43]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 -2 2 4 6 8 12 18 20
4 + -- + -- + q + q + 2 q + q - q - 3 q - q + q
4 + -- + -- + q + q + 2 q + q - q - 3 q - q + q
6 4
6 4
q q</nowiki></pre></td></tr>
q q</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[10, NonAlternating, 43]][a, z]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 3 3 5
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Link[10, NonAlternating, 43]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 3 3 5
1 3 2 a z 4 z 6 z z 3 z 3 z z
1 3 2 a z 4 z 6 z z 3 z 3 z z
---- - --- + --- - -- + --- - --- + 2 a z - -- + ---- - ---- + --
---- - --- + --- - -- + --- - --- + 2 a z - -- + ---- - ---- + --
3 a z z 5 3 a 5 3 a 3
3 a z z 5 3 a 5 3 a 3
a z a a a a a</nowiki></pre></td></tr>
a z a a a a a</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[10, NonAlternating, 43]][a, z]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 3 1 3 2 a 2 z 7 z 10 z 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Link[10, NonAlternating, 43]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 3 1 3 2 a 2 z 7 z 10 z 2
3 + a + -- - ---- - --- - --- + --- + --- + ---- + 5 a z - 2 z -
3 + a + -- - ---- - --- - --- + --- + --- + ---- + 5 a z - 2 z -
2 3 a z z 5 3 a
2 3 a z z 5 3 a
Line 100: Line 151:
---- - ---- - ---- - -- - --
---- - ---- - ---- - -- - --
5 3 a 4 2
5 3 a 4 2
a a a a</nowiki></pre></td></tr>
a a a a</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[10, NonAlternating, 43]][q, t]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 1 1 2 2 4 4 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Link[10, NonAlternating, 43]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 1 1 2 2 4 4 2
4 + 3 q + ----- + ----- + - + ---- + 3 q t + 3 q t + 4 q t +
4 + 3 q + ----- + ----- + - + ---- + 3 q t + 3 q t + 4 q t +
4 2 2 2 t 2
4 2 2 2 t 2
Line 111: Line 167:
12 5 14 6
12 5 14 6
2 q t + q t</nowiki></pre></td></tr>
2 q t + q t</nowiki></code></td></tr>
</table> }}
</table> }}

Revision as of 17:57, 1 September 2005

L10n42.gif

L10n42

L10n44.gif

L10n44

L10n43.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n43 at Knotilus!


Link Presentations

[edit Notes on L10n43's Link Presentations]

Planar diagram presentation X8192 X10,4,11,3 X20,10,7,9 X2738 X4,15,5,16 X5,13,6,12 X16,12,17,11 X17,6,18,1 X19,15,20,14 X13,19,14,18
Gauss code {1, -4, 2, -5, -6, 8}, {4, -1, 3, -2, 7, 6, -10, 9, 5, -7, -8, 10, -9, -3}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L10n43 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature 1 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-2-10123456χ
14        11
12       2 -2
10      21 1
8     42  -2
6    32   1
4   34    1
2  33     0
0 14      3
-212       -1
-42        2
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n42.gif

L10n42

L10n44.gif

L10n44