L10a39: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 10 | |
n = 10 | |
||
t = a | |
t = <nowiki>a</nowiki> | |
||
k = 39 | |
k = 39 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,2,-10:9,-1,7,-8,3,-5,4,-2,10,-3,5,-4,6,-7,8,-6/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,2,-10:9,-1,7,-8,3,-5,4,-2,10,-3,5,-4,6,-7,8,-6/goTop.html | |
||
Line 43: | Line 43: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[10, Alternating, 39]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>10</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[10, Alternating, 39]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 1, 7, 2], X[12, 4, 13, 3], X[14, 10, 15, 9], X[16, 12, 17, 11], |
|||
X[10, 16, 11, 15], X[20, 17, 5, 18], X[18, 7, 19, 8], |
X[10, 16, 11, 15], X[20, 17, 5, 18], X[18, 7, 19, 8], |
||
X[8, 19, 9, 20], X[2, 5, 3, 6], X[4, 14, 1, 13]]</nowiki></ |
X[8, 19, 9, 20], X[2, 5, 3, 6], X[4, 14, 1, 13]]</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
⚫ | |||
6, -7, 8, -6}]</nowiki></ |
6, -7, 8, -6}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[10, Alternating, 39]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L10a39_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[10, Alternating, 39]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L10a39_ML.gif]]</td></tr><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>1</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
⚫ | |||
q - ---- + ---- - ---- + ------- - 13 Sqrt[q] + 11 q - |
q - ---- + ---- - ---- + ------- - 13 Sqrt[q] + 11 q - |
||
7/2 5/2 3/2 Sqrt[q] |
7/2 5/2 3/2 Sqrt[q] |
||
Line 68: | Line 104: | ||
5/2 7/2 9/2 11/2 |
5/2 7/2 9/2 11/2 |
||
10 q + 7 q - 3 q + q</nowiki></ |
10 q + 7 q - 3 q + q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
⚫ | |||
7 - q - q - q - -- + -- + q + -- + 2 q + 5 q - 2 q - |
7 - q - q - q - -- + -- + q + -- + 2 q + 5 q - 2 q - |
||
8 6 2 |
8 6 2 |
||
Line 76: | Line 117: | ||
10 12 14 16 |
10 12 14 16 |
||
q - 3 q + q - q</nowiki></ |
q - 3 q + q - q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
⚫ | |||
2 7 7 a 2 a 4 z 13 z 3 3 z 11 z |
2 7 7 a 2 a 4 z 13 z 3 3 z 11 z |
||
---- - --- + --- - ---- + --- - ---- + 12 a z - 3 a z + ---- - ----- + |
---- - --- + --- - ---- + --- - ---- + 12 a z - 3 a z + ---- - ----- + |
||
Line 88: | Line 134: | ||
8 a z - a z + -- - ---- + 2 a z - -- |
8 a z - a z + -- - ---- + 2 a z - -- |
||
3 a a |
3 a a |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
⚫ | |||
2 8 2 4 2 7 7 a 2 a 6 z 18 z |
2 8 2 4 2 7 7 a 2 a 6 z 18 z |
||
13 + -- + -- + 8 a + 2 a - ---- - --- - --- - ---- + --- + ---- + |
13 + -- + -- + 8 a + 2 a - ---- - --- - --- - ---- + --- + ---- + |
||
Line 124: | Line 175: | ||
5 a z - 2 a z - 6 z - ---- - 2 a z - -- - a z |
5 a z - 2 a z - 6 z - ---- - 2 a z - -- - a z |
||
2 a |
2 a |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
⚫ | |||
8 + 7 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + - + |
8 + 7 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + - + |
||
10 5 8 4 6 4 6 3 4 3 4 2 2 2 t |
10 5 8 4 6 4 6 3 4 3 4 2 2 2 t |
||
Line 137: | Line 193: | ||
8 4 10 4 12 5 |
8 4 10 4 12 5 |
||
q t + 2 q t + q t</nowiki></ |
q t + 2 q t + q t</nowiki></code></td></tr> |
||
</table> }} |
Revision as of 18:11, 1 September 2005
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a39's Link Presentations]
Planar diagram presentation | X6172 X12,4,13,3 X14,10,15,9 X16,12,17,11 X10,16,11,15 X20,17,5,18 X18,7,19,8 X8,19,9,20 X2536 X4,14,1,13 |
Gauss code | {1, -9, 2, -10}, {9, -1, 7, -8, 3, -5, 4, -2, 10, -3, 5, -4, 6, -7, 8, -6} |
A Braid Representative | {{{braid_table}}} |
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in , , , ...) | (db) |
Jones polynomial | (db) |
Signature | 1 (db) |
HOMFLY-PT polynomial | (db) |
Kauffman polynomial | (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|