L10a110: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 10 | |
n = 10 | |
||
t = a | |
t = <nowiki>a</nowiki> | |
||
k = 110 | |
k = 110 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-9,8,-6,7,-2,9,-8:10,-1,3,-5,4,-7,6,-3,5,-4/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-9,8,-6,7,-2,9,-8:10,-1,3,-5,4,-7,6,-3,5,-4/goTop.html | |
||
Line 43: | Line 43: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[10, Alternating, 110]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>10</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[10, Alternating, 110]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[12, 1, 13, 2], X[8, 4, 9, 3], X[18, 14, 19, 13], |
|||
X[20, 16, 11, 15], X[14, 20, 15, 19], X[6, 17, 7, 18], |
X[20, 16, 11, 15], X[14, 20, 15, 19], X[6, 17, 7, 18], |
||
X[16, 7, 17, 8], X[10, 6, 1, 5], X[4, 10, 5, 9], X[2, 11, 3, 12]]</nowiki></ |
X[16, 7, 17, 8], X[10, 6, 1, 5], X[4, 10, 5, 9], X[2, 11, 3, 12]]</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
⚫ | |||
{10, -1, 3, -5, 4, -7, 6, -3, 5, -4}]</nowiki></ |
{10, -1, 3, -5, 4, -7, 6, -3, 5, -4}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[10, Alternating, 110]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L10a110_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[10, Alternating, 110]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L10a110_ML.gif]]</td></tr><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
⚫ | |||
-q + q - ------- + 6 Sqrt[q] - 9 q + 10 q - 9 q + |
-q + q - ------- + 6 Sqrt[q] - 9 q + 10 q - 9 q + |
||
Sqrt[q] |
Sqrt[q] |
||
9/2 11/2 13/2 15/2 |
9/2 11/2 13/2 15/2 |
||
9 q - 6 q + 3 q - q</nowiki></ |
9 q - 6 q + 3 q - q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
⚫ | |||
3 + q + -- + -- + -- + 3 q - 4 q - q - 5 q - q + 2 q - q + |
3 + q + -- + -- + -- + 3 q - 4 q - q - 5 q - q + 2 q - q + |
||
6 4 2 |
6 4 2 |
||
Line 75: | Line 116: | ||
22 |
22 |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
⚫ | |||
1 5 8 4 a 3 z 11 z 14 z 3 z 10 z |
1 5 8 4 a 3 z 11 z 14 z 3 z 10 z |
||
-(----) + ---- - --- + --- - --- + ---- - ---- + 4 a z - ---- + ----- - |
-(----) + ---- - --- + --- - --- + ---- - ---- + 4 a z - ---- + ----- - |
||
Line 87: | Line 133: | ||
---- + a z - -- + ---- - ---- + -- |
---- + a z - -- + ---- - ---- + -- |
||
a 5 3 a 3 |
a 5 3 a 3 |
||
a a a</nowiki></ |
a a a</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
⚫ | |||
8 + -- + -- + -- - ---- - ---- - --- - --- - -- + --- + ---- + 12 a z - |
8 + -- + -- + -- - ---- - ---- - --- - --- - -- + --- + ---- + 12 a z - |
||
6 4 2 5 3 a z z 7 3 a |
6 4 2 5 3 a z z 7 3 a |
||
Line 116: | Line 167: | ||
---- - ---- - -- - -- |
---- - ---- - -- - -- |
||
4 2 3 a |
4 2 3 a |
||
a a a</nowiki></ |
a a a</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
⚫ | |||
2 4 1 1 1 -2 4 2 4 q 4 |
2 4 1 1 1 -2 4 2 4 q 4 |
||
7 q + 3 q + ----- + ----- + ----- + t + ----- + - + ---- + 4 q t + |
7 q + 3 q + ----- + ----- + ----- + t + ----- + - + ---- + 4 q t + |
||
Line 128: | Line 184: | ||
12 4 12 5 14 5 16 6 |
12 4 12 5 14 5 16 6 |
||
4 q t + q t + 2 q t + q t</nowiki></ |
4 q t + q t + 2 q t + q t</nowiki></code></td></tr> |
||
</table> }} |
Revision as of 18:15, 1 September 2005
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a110's Link Presentations]
Planar diagram presentation | X12,1,13,2 X8493 X18,14,19,13 X20,16,11,15 X14,20,15,19 X6,17,7,18 X16,7,17,8 X10,6,1,5 X4,10,5,9 X2,11,3,12 |
Gauss code | {1, -10, 2, -9, 8, -6, 7, -2, 9, -8}, {10, -1, 3, -5, 4, -7, 6, -3, 5, -4} |
A Braid Representative | {{{braid_table}}} |
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in , , , ...) | (db) |
Jones polynomial | (db) |
Signature | 3 (db) |
HOMFLY-PT polynomial | (db) |
Kauffman polynomial | (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|