L11a255: Difference between revisions
From Knot Atlas
				
				
				Jump to navigationJump to search
				
				No edit summary  | 
				DrorsRobot (talk | contribs)  No edit summary  | 
				||
| Line 1: | Line 1: | ||
<!--                       WARNING! WARNING! WARNING!  | 
|||
<!-- This page was  | 
  <!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit!  | 
||
<!--  --> <!--  | 
  |||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)  | 
|||
 -->  | 
  |||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. -->  | 
|||
<!-- <math>\text{Null}</math> -->  | 
|||
<!-- <math>\text{Null}</math> -->  | 
|||
<!--                       WARNING! WARNING! WARNING!  | 
|||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit!  | 
|||
<!-- Almost certainly, you want to edit [[Template:Link Page]], which actually produces this page.  | 
|||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately.  | 
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. -->  | 
|||
<!-- <math>\text{Null}</math> -->  | 
|||
{{Link Page|  | 
  {{Link Page|  | 
||
n = 11 |  | 
  n = 11 |  | 
||
| Line 35: | Line 44: | ||
         <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td>  | 
           <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td>  | 
||
         </tr>  | 
           </tr>  | 
||
         <tr valign=top><td colspan=2>Loading KnotTheory` (version of August   | 
           <tr valign=top><td colspan=2>Loading KnotTheory` (version of August 28, 2005, 22:58:49)...</td></tr>  | 
||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 255]]</nowiki></pre></td></tr>  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 255]]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr>  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr>  | 
||
| Line 50: | Line 59: | ||
  {4, -1, 2, -3, 7, -8, 10, -9, 5, -4, 11, -7, 6, -5}]</nowiki></pre></td></tr>  | 
    {4, -1, 2, -3, 7, -8, 10, -9, 5, -4, 11, -7, 6, -5}]</nowiki></pre></td></tr>  | 
||
         <tr valign=top><td><pre style="color:  | 
           <tr  valign=top><td><pre style="color: blue; border: 0px; padding:  0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red;  border: 0px; padding:  0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 255]]]</nowiki></pre></td></tr><tr><td></td><td  align=left>[[Image:L11a255_ML.gif]]</td></tr><tr valign=top><td><tt><font  color=blue>Out[6]=</font></tt><td><tt><font  color=black>-Graphics-</font></tt></td></tr>  | 
||
<tr valign=top><td><pre  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, Alternating, 255]]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>1</nowiki></pre></td></tr>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 255]][q]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(9/2)    3      6      10      12                       3/2  | 
||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Link[11, Alternating, 255]][z]</nowiki></pre></td></tr>  | 
  |||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>ComplexInfinity</nowiki></pre></td></tr>  | 
  |||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>  | 
  |||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr>  | 
  |||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Link[11, Alternating, 255]], KnotSignature[Link[11, Alternating, 255]]}</nowiki></pre></td></tr>  | 
  |||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Infinity, 1}</nowiki></pre></td></tr>  | 
  |||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 255]][q]</nowiki></pre></td></tr>  | 
  |||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(9/2)    3      6      10      12                       3/2  | 
  |||
q       - ---- + ---- - ---- + ------- - 16 Sqrt[q] + 15 q    -   | 
  q       - ---- + ---- - ---- + ------- - 16 Sqrt[q] + 15 q    -   | 
||
           7/2    5/2    3/2   Sqrt[q]  | 
             7/2    5/2    3/2   Sqrt[q]  | 
||
| Line 69: | Line 70: | ||
      5/2       7/2      9/2      11/2    13/2  | 
        5/2       7/2      9/2      11/2    13/2  | 
||
  13 q    + 10 q    - 6 q    + 3 q     - q</nowiki></pre></td></tr>  | 
    13 q    + 10 q    - 6 q    + 3 q     - q</nowiki></pre></td></tr>  | 
||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[11, Alternating, 255]][q]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     -12    -10   2    2     -4   2     2      4      6      12  | 
||
6 - q    + q    - -- + -- + q   + -- - q  + 4 q  - 3 q  - 2 q   +   | 
  6 - q    + q    - -- + -- + q   + -- - q  + 4 q  - 3 q  - 2 q   +   | 
||
                   8    6          2  | 
                     8    6          2  | 
||
| Line 77: | Line 78: | ||
     14    16    18  | 
       14    16    18  | 
||
  2 q   - q   + q</nowiki></pre></td></tr>  | 
    2 q   - q   + q</nowiki></pre></td></tr>  | 
||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[11, Alternating, 255]][a, z]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                                    3       3               5       5  | 
||
   1     a   4 z   8 z           8 z    20 z         3   5 z    18 z  | 
     1     a   4 z   8 z           8 z    20 z         3   5 z    18 z  | 
||
-(---) + - - --- + --- - 4 a z - ---- + ----- - 8 a z  - ---- + ----- -   | 
  -(---) + - - --- + --- - 4 a z - ---- + ----- - 8 a z  - ---- + ----- -   | 
||
| Line 89: | Line 90: | ||
            3    a            a  | 
              3    a            a  | 
||
           a</nowiki></pre></td></tr>  | 
             a</nowiki></pre></td></tr>  | 
||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[11, Alternating, 255]][a, z]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                                                       2      2  | 
||
     1    a   z    4 z   10 z            3        2   z    7 z  | 
       1    a   z    4 z   10 z            3        2   z    7 z  | 
||
1 - --- - - + -- - --- - ---- - 4 a z + a  z + 7 z  - -- + ---- +   | 
  1 - --- - - + -- - --- - ---- - 4 a z + a  z + 7 z  - -- + ---- +   | 
||
| Line 125: | Line 126: | ||
    4     2               3     a                        2  | 
      4     2               3     a                        2  | 
||
   a     a               a                              a</nowiki></pre></td></tr>  | 
     a     a               a                              a</nowiki></pre></td></tr>  | 
||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 255]][q, t]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>        2     1        2       1       4       2       6       4  | 
||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 255]][q, t]</nowiki></pre></td></tr>  | 
  |||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>        2     1        2       1       4       2       6       4  | 
  |||
10 + 8 q  + ------ + ----- + ----- + ----- + ----- + ----- + ----- +   | 
  10 + 8 q  + ------ + ----- + ----- + ----- + ----- + ----- + ----- +   | 
||
             10  5    8  4    6  4    6  3    4  3    4  2    2  2  | 
               10  5    8  4    6  4    6  3    4  3    4  2    2  2  | 
||
Revision as of 12:22, 31 August 2005
| 
 | 
 | 
![]() (Knotscape image)  | 
See the full Thistlethwaite Link Table (up to 11 crossings). | 
Link Presentations
[edit Notes on L11a255's Link Presentations]
| Planar diagram presentation | X10,1,11,2 X2,11,3,12 X12,3,13,4 X18,10,19,9 X22,18,9,17 X8,21,1,22 X20,13,21,14 X14,6,15,5 X16,8,17,7 X6,16,7,15 X4,20,5,19 | 
| Gauss code | {1, -2, 3, -11, 8, -10, 9, -6}, {4, -1, 2, -3, 7, -8, 10, -9, 5, -4, 11, -7, 6, -5} | 
| A Braid Representative | {{{braid_table}}} | 
| A Morse Link Presentation |  
 | 
Polynomial invariants
| Multivariable Alexander Polynomial (in , , , ...) | (db) | 
| Jones polynomial | (db) | 
| Signature | 1 (db) | 
| HOMFLY-PT polynomial | (db) | 
| Kauffman polynomial | (db) | 
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). | 
  | 
| Integral Khovanov Homology
 (db, data source)  | 
 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
 See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top.  | 
  | 



