L11a147: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- --> |
<!-- <math>\text{Null}</math> --> |
||
<!-- --> |
<!-- <math>\text{Null}</math> --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
| Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- --> |
<!-- <math>\text{Null}</math> --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = |
t = a | |
||
k = 147 | |
k = 147 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2,3,-6,5,-11:7,-1,2,-3,4,-5,8,-10,9,-7,11,-4,6,-8,10,-9/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2,3,-6,5,-11:7,-1,2,-3,4,-5,8,-10,9,-7,11,-4,6,-8,10,-9/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
| ⚫ | |||
khovanov_table = <table border=1> |
khovanov_table = <table border=1> |
||
<tr align=center> |
<tr align=center> |
||
| Line 44: | Line 49: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2 |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 2, 2005, 15:8:39)...</td></tr> |
||
| ⚫ | |||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Length[Skeleton[Link[11, Alternating, 147]]]</nowiki></pre></td></tr> |
||
<td>< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2</nowiki></pre></td></tr> |
||
| ⚫ | |||
<tr align=left> |
|||
< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[8, 1, 9, 2], X[2, 9, 3, 10], X[10, 3, 11, 4], X[18, 12, 19, 11], |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[11, Alternating, 147]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[8, 1, 9, 2], X[2, 9, 3, 10], X[10, 3, 11, 4], X[18, 12, 19, 11], |
|||
X[12, 6, 13, 5], X[4, 19, 5, 20], X[16, 7, 17, 8], X[20, 13, 21, 14], |
X[12, 6, 13, 5], X[4, 19, 5, 20], X[16, 7, 17, 8], X[20, 13, 21, 14], |
||
X[22, 15, 7, 16], X[14, 21, 15, 22], X[6, 18, 1, 17]]</nowiki></ |
X[22, 15, 7, 16], X[14, 21, 15, 22], X[6, 18, 1, 17]]</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[{1, -2, 3, -6, 5, -11}, |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[{1, -2, 3, -6, 5, -11}, |
|||
{7, -1, 2, -3, 4, -5, 8, -10, 9, -7, 11, -4, 6, -8, 10, -9}]</nowiki></ |
{7, -1, 2, -3, 4, -5, 8, -10, 9, -7, 11, -4, 6, -8, 10, -9}]</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, -2, -2, -2, 1, -2, 1, -2, -2, -2, -2}]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 147]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a147_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[7]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td>< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, Alternating, 147]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>-5</nowiki></pre></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L11a147_ML.gif]]</td></tr><tr align=left> |
|||
< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 147]][q]</nowiki></pre></td></tr> |
||
<td>< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(21/2) 3 5 8 10 11 11 9 |
||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>KnotSignature[Link[11, Alternating, 147]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-5</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -(21/2) 3 5 8 10 11 11 9 |
|||
-q + ----- - ----- + ----- - ----- + ----- - ---- + ---- - |
-q + ----- - ----- + ----- - ----- + ----- - ---- + ---- - |
||
19/2 17/2 15/2 13/2 11/2 9/2 7/2 |
19/2 17/2 15/2 13/2 11/2 9/2 7/2 |
||
| Line 107: | Line 78: | ||
---- + ---- - ------- + Sqrt[q] |
---- + ---- - ------- + Sqrt[q] |
||
5/2 3/2 Sqrt[q] |
5/2 3/2 Sqrt[q] |
||
q q</nowiki></ |
q q</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
| ⚫ | |||
-1 + q - q + q - --- - q - q - --- + --- - q + --- + |
-1 + q - q + q - --- - q - q - --- + --- - q + --- + |
||
24 18 16 12 |
24 18 16 12 |
||
| Line 122: | Line 88: | ||
--- + -- + -- + q |
--- + -- + -- + q |
||
10 8 6 |
10 8 6 |
||
q q q</nowiki></ |
q q q</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 7 |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 5 7 |
|||
-2 a 3 a a 3 5 7 3 3 5 3 |
-2 a 3 a a 3 5 7 3 3 5 3 |
||
----- + ---- - -- - a z - 2 a z + 2 a z + 6 a z - 16 a z + |
----- + ---- - -- - a z - 2 a z + 2 a z + 6 a z - 16 a z + |
||
| Line 138: | Line 99: | ||
5 9 |
5 9 |
||
a z</nowiki></ |
a z</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 7 |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 5 7 |
|||
4 6 8 2 a 3 a a 5 9 2 2 4 2 |
4 6 8 2 a 3 a a 5 9 2 2 4 2 |
||
3 a + 3 a + a - ---- - ---- - -- - a z + a z + 2 a z + 3 a z + |
3 a + 3 a + a - ---- - ---- - -- - a z + a z + 2 a z + 3 a z + |
||
| Line 169: | Line 125: | ||
6 10 |
6 10 |
||
2 a z</nowiki></ |
2 a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 147]][q, t]</nowiki></pre></td></tr> |
|||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
| ⚫ | |||
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
||
6 4 22 8 20 7 18 7 18 6 16 6 16 5 |
6 4 22 8 20 7 18 7 18 6 16 6 16 5 |
||
| Line 190: | Line 141: | ||
---- + --- + --- + 2 t + -- + q t |
---- + --- + --- + 2 t + -- + q t |
||
6 4 2 2 |
6 4 2 2 |
||
q t q q q</nowiki></ |
q t q q q</nowiki></pre></td></tr> |
||
</table> }} |
</table> }} |
||
Revision as of 17:42, 2 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a147's Link Presentations]
| Planar diagram presentation | X8192 X2,9,3,10 X10,3,11,4 X18,12,19,11 X12,6,13,5 X4,19,5,20 X16,7,17,8 X20,13,21,14 X22,15,7,16 X14,21,15,22 X6,18,1,17 |
| Gauss code | {1, -2, 3, -6, 5, -11}, {7, -1, 2, -3, 4, -5, 8, -10, 9, -7, 11, -4, 6, -8, 10, -9} |
| A Braid Representative | ||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{u^2 v^6-2 u^2 v^5+2 u^2 v^4-2 u^2 v^3+2 u^2 v^2-u^2 v-u v^6+3 u v^5-3 u v^4+3 u v^3-3 u v^2+3 u v-u-v^5+2 v^4-2 v^3+2 v^2-2 v+1}{u v^3} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{11}{q^{9/2}}+\frac{9}{q^{7/2}}-\frac{8}{q^{5/2}}+\frac{4}{q^{3/2}}-\frac{1}{q^{21/2}}+\frac{3}{q^{19/2}}-\frac{5}{q^{17/2}}+\frac{8}{q^{15/2}}-\frac{10}{q^{13/2}}+\frac{11}{q^{11/2}}+\sqrt{q}-\frac{3}{\sqrt{q}} }[/math] (db) |
| Signature | -5 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -a^5 z^9+a^7 z^7-7 a^5 z^7+a^3 z^7+5 a^7 z^5-17 a^5 z^5+5 a^3 z^5+7 a^7 z^3-16 a^5 z^3+6 a^3 z^3+2 a^7 z-2 a^5 z-a^3 z-a^7 z^{-1} +3 a^5 z^{-1} -2 a^3 z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^3 a^{13}-3 z^4 a^{12}+z^2 a^{12}-5 z^5 a^{11}+3 z^3 a^{11}-7 z^6 a^{10}+9 z^4 a^{10}-2 z^2 a^{10}-8 z^7 a^9+16 z^5 a^9-7 z^3 a^9+z a^9-7 z^8 a^8+16 z^6 a^8-4 z^4 a^8-3 z^2 a^8+a^8-5 z^9 a^7+13 z^7 a^7-4 z^5 a^7-z^3 a^7-a^7 z^{-1} -2 z^{10} a^6+z^8 a^6+17 z^6 a^6-20 z^4 a^6+z^2 a^6+3 a^6-8 z^9 a^5+38 z^7 a^5-56 z^5 a^5+29 z^3 a^5-z a^5-3 a^5 z^{-1} -2 z^{10} a^4+7 z^8 a^4-z^6 a^4-11 z^4 a^4+3 z^2 a^4+3 a^4-3 z^9 a^3+17 z^7 a^3-31 z^5 a^3+19 z^3 a^3-2 a^3 z^{-1} -z^8 a^2+5 z^6 a^2-7 z^4 a^2+2 z^2 a^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



