L10a166: Difference between revisions
From Knot Atlas
				
				
				Jump to navigationJump to search
				
				No edit summary  | 
				DrorsRobot (talk | contribs)  No edit summary  | 
				||
| Line 1: | Line 1: | ||
<!--                       WARNING! WARNING! WARNING!  | 
  <!--                       WARNING! WARNING! WARNING!  | 
||
<!-- This page was generated from the splice   | 
  <!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit!  | 
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)  | 
  <!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)  | 
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. -->  | 
  <!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. -->  | 
||
<!--  -->  | 
  <!-- <math>\text{Null}</math> -->  | 
||
<!--  -->  | 
  <!-- <math>\text{Null}</math> -->  | 
||
<!--                       WARNING! WARNING! WARNING!  | 
  <!--                       WARNING! WARNING! WARNING!  | 
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit!  | 
  <!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit!  | 
||
| Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately.  | 
  <!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately.  | 
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. -->  | 
  <!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. -->  | 
||
<!--  -->  | 
  <!-- <math>\text{Null}</math> -->  | 
||
{{Link Page|  | 
  {{Link Page|  | 
||
n = 10 |  | 
  n = 10 |  | 
||
t =   | 
  t = a |  | 
||
k = 166 |  | 
  k = 166 |  | 
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2,4,-5:2,-1,6,-7:5,-4,8,-9,3,-10:7,-6,10,-8,9,-3/goTop.html |  | 
  KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2,4,-5:2,-1,6,-7:5,-4,8,-9,3,-10:7,-6,10,-8,9,-3/goTop.html |  | 
||
braid_table     = <table cellspacing=0 cellpadding=0 border=0>  | 
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>  | 
|||
| ⚫ | |||
khovanov_table  = <table border=1>  | 
  khovanov_table  = <table border=1>  | 
||
<tr align=center>  | 
  <tr align=center>  | 
||
| Line 43: | Line 51: | ||
         <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td>  | 
           <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td>  | 
||
         </tr>  | 
           </tr>  | 
||
         <tr valign=top><td colspan=2  | 
           <tr valign=top><td colspan=2>Loading KnotTheory` (version of September 2, 2005, 15:8:39)...</td></tr>  | 
||
| ⚫ | |||
         </table>   | 
  |||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr>  | 
|||
         <table><tr align=left>  | 
  |||
<  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Length[Skeleton[Link[10, Alternating, 166]]]</nowiki></pre></td></tr>  | 
||
<td><  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr>  | 
||
| ⚫ | |||
<tr align=left>  | 
  |||
<  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 1, 7, 2], X[2, 5, 3, 6], X[20, 13, 15, 14], X[10, 3, 11, 4],   | 
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>10</nowiki></code></td></tr>  | 
  |||
| ⚫ | |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[10, Alternating, 166]]]</nowiki></code></td></tr>  | 
  |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr>  | 
  |||
</table>  | 
  |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 1, 7, 2], X[2, 5, 3, 6], X[20, 13, 15, 14], X[10, 3, 11, 4],   | 
  |||
  X[4, 9, 1, 10], X[16, 7, 17, 8], X[8, 15, 5, 16], X[18, 11, 19, 12],   | 
    X[4, 9, 1, 10], X[16, 7, 17, 8], X[8, 15, 5, 16], X[18, 11, 19, 12],   | 
||
  X[12, 19, 13, 20], X[14, 17, 9, 18]]</nowiki></  | 
    X[12, 19, 13, 20], X[14, 17, 9, 18]]</nowiki></pre></td></tr>  | 
||
| ⚫ | |||
</table>  | 
  |||
| ⚫ | |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>  | 
  |||
  {7, -6, 10, -8, 9, -3}]</nowiki></pre></td></tr>  | 
|||
| ⚫ | |||
| ⚫ | |||
<tr align=left>  | 
  |||
<  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[6, {1, -2, -3, -2, -2, -2, -4, 3, -2, -5, 4, 3, -2, -1, -2, -3, -2,   | 
||
| ⚫ | |||
   -4, -3, -2, 5, 4, 3, -2}]</nowiki></pre></td></tr>  | 
|||
         <tr  valign=top><td><pre style="color: blue; border: 0px; padding:  0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red;  border: 0px; padding:  0em"><nowiki>Show[DrawMorseLink[Link[10, Alternating, 166]]]</nowiki></pre></td></tr><tr><td></td><td  align=left>[[Image:L10a166_ML.gif]]</td></tr><tr valign=top><td><tt><font  color=blue>Out[7]=</font></tt><td><tt><font  color=black>-Graphics-</font></tt></td></tr>  | 
|||
</table>  | 
  |||
| ⚫ | |||
         <table><tr align=left>  | 
  |||
<  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>-5</nowiki></pre></td></tr>  | 
||
<td><  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[10, Alternating, 166]][q]</nowiki></pre></td></tr>  | 
||
| ⚫ | |||
<tr align=left><td></td><td>[[Image:L10a166_ML.gif]]</td></tr><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>  | 
  |||
</table>  | 
  |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-5</nowiki></code></td></tr>  | 
  |||
</table>  | 
  |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>  | 
  |||
| ⚫ | |||
-q        + ----- - ----- + ----- - ----- + ----- - ----- + ----- -   | 
  -q        + ----- - ----- + ----- - ----- + ----- - ----- + ----- -   | 
||
             23/2    21/2    19/2    17/2    15/2    13/2    11/2  | 
               23/2    21/2    19/2    17/2    15/2    13/2    11/2  | 
||
| Line 106: | Line 82: | ||
  ---- + ---- - q  | 
    ---- + ---- - q  | 
||
   9/2    7/2  | 
     9/2    7/2  | 
||
  q      q</nowiki></  | 
    q      q</nowiki></pre></td></tr>  | 
||
| ⚫ | |||
</table>  | 
  |||
| ⚫ | |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>  | 
  |||
| ⚫ | |||
q    + --- + --- + --- + --- + --- + --- + --- + --- + --- + --- +   | 
  q    + --- + --- + --- + --- + --- + --- + --- + --- + --- + --- +   | 
||
        38    36    34    32    30    28    26    24    22    20  | 
          38    36    34    32    30    28    26    24    22    20  | 
||
| Line 121: | Line 92: | ||
  --- + --- + --- - --- + q  | 
    --- + --- + --- - --- + q  | 
||
   18    16    12    10  | 
     18    16    12    10  | 
||
  q     q     q     q</nowiki></  | 
    q     q     q     q</nowiki></pre></td></tr>  | 
||
| ⚫ | |||
</table>  | 
  |||
| ⚫ | |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>  | 
  |||
| ⚫ | |||
  a     3 a    3 a     a     6 a    13 a    8 a     a         7  | 
    a     3 a    3 a     a     6 a    13 a    8 a     a         7  | 
||
-(--) + ---- - ----- + --- - ---- + ----- - ----- + --- - 13 a  z +   | 
  -(--) + ---- - ----- + --- - ---- + ----- - ----- + --- - 13 a  z +   | 
||
| Line 135: | Line 101: | ||
      9        11        5  3       7  3      9  3    5  5      7  5  | 
        9        11        5  3       7  3      9  3    5  5      7  5  | 
||
  17 a  z - 4 a   z - 2 a  z  - 11 a  z  + 6 a  z  - a  z  - 3 a  z</nowiki></  | 
    17 a  z - 4 a   z - 2 a  z  - 11 a  z  + 6 a  z  - a  z  - 3 a  z</nowiki></pre></td></tr>  | 
||
| ⚫ | |||
</table>  | 
  |||
| ⚫ | |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>  | 
  |||
| ⚫ | |||
    8       10       12    14   a    3 a    3 a     a     3 a  | 
      8       10       12    14   a    3 a    3 a     a     3 a  | 
||
13 a  + 24 a   + 11 a   - a   + -- + ---- + ----- + --- - ---- -   | 
  13 a  + 24 a   + 11 a   - a   + -- + ---- + ----- + --- - ---- -   | 
||
| Line 173: | Line 134: | ||
   9  9    11  9  | 
     9  9    11  9  | 
||
  a  z  - a   z</nowiki></  | 
    a  z  - a   z</nowiki></pre></td></tr>  | 
||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[10, Alternating, 166]][q, t]</nowiki></pre></td></tr>  | 
|||
</table>  | 
  |||
| ⚫ | |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>  | 
  |||
| ⚫ | |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>  | 
  |||
| ⚫ | |||
q   + q   + ------- + ------- + ------ + ------ + ------ + ------ +   | 
  q   + q   + ------- + ------- + ------ + ------ + ------ + ------ +   | 
||
             26  10    24  10    24  9    22  8    20  8    20  7  | 
               26  10    24  10    24  9    22  8    20  8    20  7  | 
||
| Line 193: | Line 149: | ||
  ------ + ------ + ------ + ----- + ----  | 
    ------ + ------ + ------ + ----- + ----  | 
||
   12  3    10  3    10  2    8  2    6  | 
     12  3    10  3    10  2    8  2    6  | 
||
  q   t    q   t    q   t    q  t    q  t</nowiki></  | 
    q   t    q   t    q   t    q  t    q  t</nowiki></pre></td></tr>  | 
||
</table> }}  | 
           </table> }}  | 
||
Revision as of 17:42, 2 September 2005
| 
 | 
 | 
![]() (Knotscape image)  | 
See the full Thistlethwaite Link Table (up to 11 crossings). | 
Link Presentations
[edit Notes on L10a166's Link Presentations]
| Planar diagram presentation | X6172 X2536 X20,13,15,14 X10,3,11,4 X4,9,1,10 X16,7,17,8 X8,15,5,16 X18,11,19,12 X12,19,13,20 X14,17,9,18 | 
| Gauss code | {1, -2, 4, -5}, {2, -1, 6, -7}, {5, -4, 8, -9, 3, -10}, {7, -6, 10, -8, 9, -3} | 
| A Braid Representative | |||||||
| A Morse Link Presentation |  
 | 
Polynomial invariants
| Multivariable Alexander Polynomial (in , , , ...) | (db) | 
| Jones polynomial | (db) | 
| Signature | -5 (db) | 
| HOMFLY-PT polynomial | (db) | 
| Kauffman polynomial | (db) | 
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). | 
  | 
| Integral Khovanov Homology
 (db, data source)  | 
 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
 See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top.  | 
  | 



